
AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Project no.:
AAL‐2009‐2‐137

PeerAssist

A P2P platform supporting virtual communities to
assist independent living of senior citizens

 Deliverable 3.5
“P2P overlay networks for PeerAssist”

Lead Participant/Editor UoA/ Christos Xenakis

Authors Christos Xenakis, Foivos Demertzis, Giannis karras, Nikos Giannopoulos

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Table of Contents

 1 Introduction ..1
 2 P2P technology ...1

 2.1 Evolution ..2
 2.2 Latest and most prominent P2P ..4
 2.3 P2P architectures..4

 2.3.1 Purely Decentralized..4
 2.3.2 Hybrid Architecture..5

 2.4 Discovery mechanisms for P2P systems ..6
 2.4.1 Centralized indexes and repositories...6
 2.4.2 Flooding broadcast of queries..7
 2.4.3 Routing Model..7

 2.5 P2P networks structure ...8
 2.6 Benefits...9
 2.7 Drawbacks...9

 3 Analysis of available P2P technologies..10
 3.1 JXTA...10
 3.2 Microsoft Windows P2P ...12
 3.3 The Peer‐to‐Peer Trusted Library ..13
 3.4 JINI...14
 3.5 Enterprise service bus (ESB) ‐ Mule..15
 3.6 Unmanaged Internet Architecture (UIA)..16
 3.7 MACEDON and Mace ...17
 3.8 Ezel ...21
 3.9 Microsoft Groove ...21
 3.10 Summary...22

 4 Platform selection process and criteria ...23
 4.1 Connectivity, communication, grouping ..23
 4.2 Service, Interoperability, Openness and Extensibility ...24
 4.3 System architecture ..25
 4.4 Efficiency and scalability ..25
 4.5 Security and trust ...25
 4.6 OSGI ...26
 4.7 Support a wide range of end‐user devices ..27
 4.8 Why JXTA ? ..27

 5 JXTA ..28
 5.1 Overview...28
 5.2 Peer ..30
 5.3 Peer group ..31
 5.4 Service...31
 5.5 Modules..33
 5.6 Message..34
 5.7 Pipes..34
 5.8 Advertisement ...37
 5.9 Security...38
 5.10 IDs...39

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5.11 Network architecture ...39
 5.11.1 Shared Resource Distributed Index (SRDI)...40
 5.11.2 Queries...40

 5.12 Firewalls and NAT...42
 5.13 JXTA protocols...43

 5.13.1 Peer Discovery Protocol...44
 5.13.2 Peer Information Protocol..44
 5.13.3 Peer Resolver Protocol...45
 5.13.4 Pipe Binding Protocol...45
 5.13.5 Endpoint Routing Protocol...46
 5.13.6 Rendezvous Protocol..47

 5.14 OSGI (IAN) ..47
 6 Conclusions ...48
 7 References...49

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 1 Introduction
This document describes the work has been done in Task 3.4 of the project Peerassit entitled
“Peer-to-peer overlay network selection”. In this task, we have analyzed and evaluated the
existing platforms for building P2P networks. Platforms evaluation has been conducted
considering the entire set of PeerAssist requirements including functional and non functional. The
most appropriate technology for PeerAssist is JXTA, which has been implemented in a small scale
testbed for peerassist. The basic functionality of JXTA has been tested and possible
improvements and enhancements has been drawn. The rest of this deliverable is organized as
follows:

Chapter 2 briefly presents and analyzes the evolution of P2P technology focusing on its most
important representatives. It describes the different architectures employed in P2Ps that provide
decentralization, as well as the different discovery mechanisms utilized to locate specific data and
resources within the system. Finally, it outlines the possible advantages and drawbacks
associated with P2P applications and systems.

Chapter 3 examines a number of existing tools and platforms that have been developed to
facilitate the implementation of P2P systems and applications. A developer may use one of them
to build its own P2P system or alternatively provide a custom tailored one.

Chapter 4 presents and analyzes the criteria and the selection process followed in choosing the
most appropriate available platform to build Peerassist. The specific criteria used derive from the
users and services requirements of the PeerAssit platform, determined in WP2, including both
functional and non functional. We have concluded that the most appropriate available tool is
JXTA.

Chapter 5 presents a detailed description of JXTA focusing on its functional components as well
as the provided services. Moreover, the granted API, which enables developers to interact with
JXTA and implement their own systems and application on top of JXTA has been analyzed and
studied. Finally, the entire JXTA functionality and the provided services have been evaluated and
tested in order to assess their conformance with peerassist. This gave a significant input in the
forthcoming design phase of the peerassist platform as well as the followed design choices.

Finally, chapter 6 contains our conclusions.

 2 P2P technology
Peer-to-Peer (P2P) is defined as a concept allowing direct communication between individual
computers by some, or as a set of networking design principles by others. The actual
definition of what P2P is varies according to researchers, but most agree that a peer-to-peer
system traditionally rejects the client/server model and the underlying hierarchy it imposes
between computers operating on a network.

A P2P network is a distributed network composed of a large number of distributed,
heterogeneous, autonomous, and highly dynamic peers in which participants share a part of their
own resources such as processing power, storage capacity, softwares, and files contents. The
participants in the P2P network can act as a server and a client at the same time. They are
accessible by other nodes directly, without passing intermediary entities. The P2P models can be

1

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

pure or hybrid. In pure P2P any single, arbitrary chosen terminal entity can be removed from the
network without having the network suffering any loss of network service. Hybrid P2P allows the
existence of central entities in its network to provide parts of the offered network services.

P2P became widely popular for the first time through file exchange applications such
as Napster, Kazaa or Gnutella, instant messaging application such as ICQ or Yahoo! Messenger,
or when we started “calling” over the Internet with Skype. Others discovered P2P with
Groove(now Microsoft Groove), a software application developed by Groove Networks in the
1990's.

Since the year 2000, P2P technologies have boomed which resulted in a high number of file
sharing and chatting applications. Unfortunately, some P2P applications have often been
associated with illegal file transfers, copyright infringements on music and films, and all sorts
of other illegal or unsafe activities. Those using P2P technologies have been accused of
participating in a movement damaging the economy.

 2.1 Evolution

The general idea behind P2P is that computer devices belonging to users should act both as client
and server on the network and that they should connect directly to each other, that is, without the
need of a central server, to exchange information or services. A P2P software
application is enabling such operations between several computer devices connected
to each other via a network.

ICQ
ICQ was one of the first P2P applications made available to a wide audience. It allowed users
to exchange instant messages and to be notified when they were on-line. Pur is t s do
no t cons ider ICQ as a pure P2P app l i ca t ion , since it is using a central server to identify
users appearing on the network and to notify other connected users of their presence. Once the
notification is sent, users communicate directly. Therefore it is a combination of
client/serverand P2P design principles.

Napster
Three years after ICQ, Napster appeared on the Internet in 1999 and provided users
with the possibility to exchange MP3 audio files. Users uploaded their file list on a
central server. Then, they sent their queries for specific files to that server, which replied with a
list of IP addresses (i.e., Internet locations) of users having those files. At last, they
established a connection with these users to download files. Of course, there was a
risk of obtaining obsolete IP addresses since users would connect from different
locations or would be assigned new IP addresses each time they connect to the Internet.

Gnutella
Gnutella appeared in March 2000. Like Napster, it was a file exchange application. However, it
differed significantly from Napster in its way of establishing contact with other peers and
querying for f i l es . Ins tead o f con tac t ing a cen t ra l se rver , the Gnutella application
would try to connect to a predefined set of nodes to obtain a list of IP addresses of other
nodes. It would then try to connect to these nodes to obtain more IP addresses until a sufficient
set of successful connection was reached. Unsuccessful addresses were
automatically discarded. This type of bootstrapping method made the application
decentralized and independent of the current node network topography. Nodes could
join and quit the network from anywhere without hampering the systems' capacity to establish

2

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

connections with other nodes as long as seed nodes were available.

Once the connection was established, each node could send file queries to the pool of
connec ted nodes . They wou ld fo rward t h e s e t o t h e n o d e s t h e y k n e w ,
w h i c h would forward these to nodes they knew, etc... etc... provoking a cascading effect.
When a node possessed the researched file, it would notify the original node sending the
query, so that a file transfer could be started between them. Each query would contain a positive
number ca l led t ime to l i ve (TTL) wh ich was decreased each time the query was
forwarded to another node. When TTL reached 0, the query was not forwarded anymore. The list
of visited nodes was kept in each copy of the propagated query to avoid loops. Unfortunately, it
did not prevent nodes from receiving the same query twice, through different paths. The
increasing number of users resulted into an incredible amount of useless traffic between nodes.
The consequence was that the network congestion around servers was now propagated around
all users.

The architecture of Gnutella presented a benefit over the architecture of Napster. The latter could
easily be attacked or stopped since it was relying on a central server. With Gnutella, attacking
or stopping a node was inefficient, since other nodes could take over and compensate for the
missing node.

Kazaa
Kazaa appeared in March 2000 and introduced a new concept: super nodes. Instead of
having each node maintaining its own list of shared files to share locally, they were
uploaded to super nodes at regular intervals. U s e r ' s q u e r i e s w e r e s e n t t o s u p e r
n o d e s . Then, these nodes would reply with the list of nodes offering the searched file. Queries
were not propagated in all directions anymore. The user cou ld then es tab l i sh a
connec t ion w i th the remote node containing the requested file and start the transfer. This
method induces significantly less network traffic than Gnutella-like applications.
Super nodes are automatically chosen by the system accord ing to the i r capac i t y
(s to rage , band-width, etc...). In this model, some individuals in the community are
being given more responsibilities to organize the life of the community.

BitTorrent
BitTorrent appeared in Ju ly 2001 . I t i n t roduced a new way o f exchang ing f i l es
on a P2P ne twork . Ins tead o f focus ing on a s ing le peer for the transfer of large files,
the query peer would obtain parts of it from different peers simultaneously, creating a torrent of
data. This method allows faster download time compared to traditional P2P transfer
methods. If you were unlucky and downloaded a file from a peer having a low
bandwidth connection, you had no other option than to wait or to cancel the
connection and try with another peer, hoping for a better connection. With this new
method, even a set of low bandwidth peers can generate rapid transfer times.

Freenet
Freenet appeared in 1999 (at least conceptually). The objective of this P2P application was to let
its user publish and exchange decentralized information in pure anonymity using
cryptography and special routing functions between nodes, making it hard to trace peers querying
for information. Other applications such as Napster, Gnutella and Kazaa do not provide
anonymity. Users know who they are downloading data from and they also know
where users queries are coming from, making it relatively easy to trace them.

3

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 2.2 Latest and most prominent P2P

At the beginning of the millennium, P2P had multiple initial objectives. They started
with chatting, then with file sharing and avoiding central server computers in general. However,
these early objectives obscured another goal of P2P application: distributed computing .

One of the most successful examples is the SETI@home project. Internet users can download a
free program that would use the idle time of their computer to analyze radio telescope data. When
finished, the results are sent back to a central server and new data is downloaded for analysis.
Although this application is not P2P in its design, it illustrates how many computers
can solve a large divisible problem. A real-life example of divisible problems is mowing the lawn.
One person can do it alone or several can simultaneously do it by taking care of a part of the yard.

There are some indivisible problems, such as checking one's account balance when withdrawing
money. You need to centralize all account transactions in one location in order to compute the
balance and make sure there is money available when performing the withdrawal. However
checking many balance accounts is a divisible problem: the account checking can be spread over
a set of computers. Each account can be verified simultaneously. In general, indivisible problems
are better served in a client/server model and divisible problems in a P2P model.

One will notice that, grid computing and a P2P network of computers performing
distributed computing is virtually the same thing. Both systems have to satisfy the same core
needs to locate resources, request services, access, exchange and collect information
remotely.

A surprising evolution of P2P is Skype, the application allowing us to call for free using our
computer anywhere around the world. This ground breaking technology has had a tremendous
impact on the telecom industry. Today, companies are trying to develop P2P television, but they
are facing issues with network bandwidth availability.

To summarize, P2P is the last extremity of a continuum starting from the mainframe-
terminal concept and going forward to the client-server, multi-tier, SOA and cloud computing
concepts.

 2.3 P2P architectures

Decentralization is one of the major concept of p2p systems. This includes distributed storage,
processing, information sharing and also control information. Based on the degree of
decentralization in a p2p system, we can classify them into two categories:

 2.3.1 Purely Decentralized

A pure p2p system is a distributed system without any centralized control. In such systems all
nodes are equivalent in functionality. In such networks the nodes are named as ”servant”
(SERver+cliENT), the term servent represents the capability of the nodes of a peer-to-peer
network of acting at the same time as server as well as a client.

Gnutella, Freenet, Chord and CAN are instances of such systems. Pure p2p systems are
inherently scalable. Scalability in the system is usually restricted by the amount of centralized
operation necessary and such system largely avoid central instances or servers. This kind of

4

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

systems are inherently fault-tolerant, since there is no central point of failure and the loss of a peer
or even a number of peers can easily be compensated. They also have a greater degree of
autonomous control over their data and resources. On the other hand such systems present slow
information discovery and there is no guarantee about quality of services. Also because of the
lack of a global view at the system level, it is difficult to predict the system behavior.

 2.3.2 Hybrid Architecture

In hybrid P2P systems, there is a central server that maintains directories of information about
registered users to the network, in the form of meta-data. The end-to-end interaction (data
exchange) is between two peer clients. There are two kinds of hybrid systems: centralized
indexing and decentralized indexing. In centralized indexing (see Figure 1) a central server
maintains an index of the data or files that are currently being shared by active peers. Each peer
maintains a connection to the central server, through which the queries are sent. This architecture
is used by Napster. Such systems with the central server are simple and they operate quickly and
efficiently for discovery information. Searches are comprehensive and they can provide guarantee
in searches. On the other hand they are vulnerable to censorship and malicious attack. Because
of central servers they have a single point of failure. They are not inherently scalable, because of
limitations on the size of the database and its capacity to respond to queries. As central directories
are not always updated, they have to be refreshed periodically.

Figure 1. Centralized Indexing

In decentralized indexing (see Figure 2), a central server registers the users to the system and
facilitates the peer discovery process. In these systems some of the nodes assume a more
important role than the rest of nodes. They are called ”supernodes”. These nodes maintain the
central indexes for the information shared by local peers connected to them and proxy search
requests on behalf of these peers. Queries are therefore sent to SuperNodes, not to other peers.
Kazaa and Morpheus are two similar decentralized indexing systems. In such systems peers are
automatically elected to become SuperNodes if they have sufficient bandwidth and processing
power and a central server provides new peers with a list of one or more SuperNodes with which
they can connect.

5

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Figure 2. Distributed Indexing

More recent architectures, such as Gnutella also uses the concept of Super Nodes. As a node
with enough CPU power joins the network, it immediately becomes a Super-Peer and establishes
connections with other SuperPeers, forming a flat unstructured network of SuperPeers. It also sets
the number of clients required for it to remain a SuperPeer. If it receives at least the required
number of connections to client nodes within a specified time, it remains a SuperPeer. Otherwise
it turns into a regular client node. If no SuperPeer is available, it tries to become a SuperPeer
again for another probation period.

In comparison with purely decentralized systems, they reduce the discovery time and also they
reduce the traffic on messages exchanging between nodes. In comparison with centralized
indexing, they reduce the workload on central server but they present slower information
discovery. Also in this kind of systems, there is still no unique point of failure as on single central
sever. If one or more supernodes go down, the nodes connected to them can open new
connection with others, and the network will continue to operate. In the case a large number or
even all supernodes go down, the existing peers become supernodes themselves.

 2.4 Discovery mechanisms for P2P systems

Distributed peer-to-peer systems often require a discovery mechanism to locate specific data
within the system. P2P systems have evolved from first generation centralized structures to
second generation flooding-based and then third generation systems based on distributed hash
tables [26]:

 2.4.1 Centralized indexes and repositories

This mechanism is used in hybrid systems. In this model the peers of the community connect to a
centralized directory servers, which store all information regarding location and usage of
resources. Upon request from a peer, the central index will match the request with the best peer in
its directory that matches the request. The best peer could be the one that is cheapest, fastest,
nearest, or most available, depending on the user needs. Then the data exchange will occur
directly between the two peers. Napster uses this method. A central directory server maintains: an
index with meta data (file name, time of creation etc.) of all files in the network, a table of
registered user connection information (IP addresses, connection speeds etc.), a table listing the
files that each user holds and shares in the network. In the beginning the client contacts the

6

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

central server and reports a list with the files it maintains. When server receives a query from a
user, it searches for matches in its index, returning a list of users that hold the matching file. The
user then opens a direct connection with the peer that holds the requested file, and downloads it.

 2.4.2 Flooding broadcast of queries

This model is a pure p2p model in which each peer does not maintain any central directory and
each peer publishes information about the shared contents in the P2P network. Since no single
peer knows about all resources, peers in need for resources flood an overlay network queries to
discover a resource, each request from a peer is flooded (broadcasted) to directly connected
peers, which themselves flood their peers etc., until the request is answered or a maximum
number of flooding steps occur. Flooding based search networks are built in an ad hoc manner,
without restricting a priori which nodes can connect or what types of information they can
exchange. Different broadcast policies have been implemented to improve search in P2P
networks [27][28][29]. Original architecture of Gnutella uses the flooding broadcast to find the files
in the network. It works as a distributed file storage system. There is four types of messages in the
Gnutella protocol: Ping: a request for a certain host to announce itself. Pong: reply to a Ping
message. It contains the IP and port of the responding host and number and size of files shared.
Query: a search request. It contains a search string and the minimum speed requirements of the
responding host. Query hits: reply to a Query message. It contains the IP and port and speed of
the responding host, the number of matching files found and their indexed result set.After joining
the Gnutella network(by using hosts such as gnutellahosts.com), a node sends out a Ping
message to any node it is connected to. The nodes send back a Pong message identifying
themselves, and also propagate the ping to their neighbors. Gnutella originally uses TTL-limited
flooding (or broadcast) to distribute Ping and Query messages. At each hop the value of the field
time-to-live(TTL) is decremented, and when it reaches zero the message is dropped. In order to
avoid loops, the nodes use the unique message identifiers to detect and drop duplicate messages.
This approach improves efficiency and preserve network band width. Once a node receives a
QuerryHit message, indicating that the target file has been identified at a certain node, it initiates a
direct out-of-network download, establishing a direct connection between the source and target
node.

Although the flooding protocol might give optimal results in a network with a small to average
number of peers, it does not scale well. Furthermore, accurate discovery of peers is not
guaranteed in flooding mechanisms. Also TTL effectively segments the Gnutella network into
subsets, imposing on each user a virtual horizon beyond which their messages cannot reach. If on
the other hand the TTL is removed, the network would be swamped with requests.

 2.4.3 Routing Model

The routing model adds structure to the way information about resources are stored using
distributed hash tables. This protocol provide a mapping between the resource identifier and
location, in the form of a distributed routing table, so that queries can be efficiently routed to the
node with the desired resource. This protocol reduces the number of p2p hops that must be taken
to locate a resource. The look-up service is implemented by organizing the peers in a structured
overlay network, and routing a message through the overlay to the responsible peer. Several
proposals have been recently put forth for implementing distributed P2P look-up services :

Freenet
Freenet [30] provides file-storage service rather than filesharing service. In this system each peer
from the network is assigned a random ID and each peer also knows a given number of peers.

7

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

When a document is shared on such a system, an ID is assigned to the document based on a
hash of the document’s contents and its name. Each peer will then route the document towards
the peer with the ID that is most similar to the document ID. This process is repeated until the
nearest peer ID is the current peer’s ID. Each routing operation also ensures that a local copy of
the document is kept. When a peer requests the document from the p2p system, the request will
go to the peer with the ID most similar to the document ID. This process is repeated until a copy of
the document is found. Then the document is transferred back to the request originator, while
each peer participating the routing will keep a local copy.

Chord
Chord [33] is a decentralized p2p lookup protocol that stores key/value pairs for distributed data
items. Given a key, it maps key a node responsible for storing the key’s value. In the steady state,
in an N-node network, each node maintains routing information about O(logN) other nodes, and
resolves all lookups via O(logN) messages to other nodes. Updates to the routing information for
nodes leaving and joining require only O(log2N) messages.

Content Addressable Networks
CAN [31] is a mesh of N nodes in virtual d-dimensional dynamically partitioned coordinate space.
Each peer keeps track of its neighbors in each dimension. When a new peer joins the network, it
randomly chooses a point in the identifier space and contacts the peer currently responsible for
that point. The contacted peer splits the entire space for which it is responsible into two pieces
and transfers responsibility of half to the new peer. The new peer also contacts all of the
neighbors to update their routing entities. The CAN discovery mechanism consists of two core
operations namely, a local hash-based look-up of a pointer to a resource, and routing the look-up
request to the pointer. The CAN algorithm guarantees deterministic discovery of an existing
resource in O(N1/d) steps.

Pastry
An approach similar to Cord was also used in Pasty [32]. In the Pastry each node network has a
unique identifier (nodId) from a 128-bit circular index space. The pastry node routes a message to
the node with a nodeId that is numerically closest to the key contained in the message, from its
routing table of O(logN), where N is the number of active Pastry nodes. The expected of routing
steps is O(logN). Pastry takes into account network locality; it seeks to minimizes the distance
messages travel, according to a scalar proximity metric like the number of IP routing hops.

 2.5 P2P networks structure

P2P networks can be classified by the degree to which these overlay networks contain some
structure or are created ad-hoc. Structure refer to the way in which the content of the network is
located with respect to the network topology. In structured networks, the topology is tightly
controlled and the data are placed at specific locations. These systems provide a mapping
between the data identifier and location, in the form of a distributed routing table, so that queries
can be efficiently routed to the node with the desired data. In unstructured networks, the
placement of the data is completely unrelated to the overlay topology and peers are connected
directly to each other. They are refereed to as neighbors and have no information of each others
data. In these systems, searching amounts to random search, in which various nodes are probed
and asked if they have any match for the query. For instance, Gnutella is unstructured and
Freenet, Chord and CAN are structured.

In many ways, the quality of a P2P system depends on the structural and behavioral properties of

8

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

its network. Unstructured systems are easy to implement and also they require little maintenance
but they lack scalability. As the number of participant peers increases, the number of messages
exchanged for a resource search grows. Flooding search protocol used in unstructured P2P
networks is very sensitive to the number of edges in the network graph. If the number of links is to
small, all nodes will not be reachable in a reasonable amount of time. Conversely, if there are too
many links, numerous identical copies of the query message will arrive at many nodes from
different directions, resulting in wasted bandwidth. In structured P2P systems peers maintain
information about what resources neighboring peers offer. It increases the cost of maintenance
efforts during changes in the overlay network when peers join or leave.

 2.6 Benefits

The common benefits associated with P2P applications are:

Tapping into resources at the edge of the Internet. Instead of relying on a central server to
perform many operations, P2P attempts to maximize the utilization of resources of client PCs
(memory, processing power and storage capacities) instead.

Reduced network traffic. If more work is performed at the edge of the Internet or if
resources are distributed between nodes, then there will be less traffic and network congestion
around servers. However, we have seen that if the search mechanism for resources across peers
is not well implemented, it can generate a lot of overhead traffic.

Cost savings. If work can be done by peers, then there is no need to buy a server to do it.
Therefore, one can save money in material and maintenance.

Faster information delivery. We have seen that high volumes of data can be generated
by downloading data parts from multiple peers simultaneously. This is more efficient than
acquiring a bigger bandwidth between two entities where only one end is transmitting
data.

Scalability . If extra processing power for a P2P application is needed, one just needs
to add extra nodes which is easier than installing another server. This can be useful for divisible
problems.

Self-organization. Nodes arrive and depart at frequent intervals in P2P systems. Despite this
chaotic activity, P2P systems can re-organize themselves automatically.

Network fault tolerance. If one peer goes down the network is still alive, another one can take
over. If a server is down that is not (always) true.

Pervasiveness. Th is i s the capac i ty to reconnec t w i th peers and serv ices tha t
have changed location on the Internet. It allows users to behave like nomads on the Internet.

 2.7 Drawbacks

The common drawbacks associated with P2P applications are:

Non-deterministic services. Since peers connect and disconnect to the network more often than
servers, there is a higher risk of resource or service unavailability. However, if the resources and

9

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

services are duplicated on another peer, this problem can be mitigated. If two peers request the
same service or resources on a P2P network, they may obtain it from different peers
via different routes, with different bandwidths, resulting in different service quality.

Content ownership infringement. Early P2P allowed fast distribution of any content,
including copyright protected content. However, some control on who-exchanges-what-with-
whom can be imp lemented now w i th in P2P app l i ca t ions , l im i t ing the mass ive
i l lega l propagation of resources. Sharing content or resources is a matter of trust.

Absence of central control. The fact that P2P applications allow the exchange of direct
information from one peer to another means that improper content can be transferred too. The
flip side of this argument is that a complete central server-like type of control would still not
prevent users from exchanging this kind of information. They would simply do it by other means.
There is a fundamental conceptual flaw with the idea that control needs to be central.
Control is about trust. Whom do you trust? Why? And what privileges do you grant to that person
or entity?

 3 Analysis of available P2P technologies
A number of tools and platforms that had considerable momentum in the previous decade are not
being actively developed anymore and thus the real choice between JXTA and other technologies
comes down to JXTA vs. a custom tailored solution using a combination of established
technologies.

 3.1 JXTA

JXTA is a set of open, generalized peer-to-peer (P2P) protocols that allow any networked device
— sensors, cell phones, PDAs, laptops, workstations, servers and supercomputers — to
communicate and collaborate mutually as peers. The JXTA protocols are programming language
independent, and multiple implementations, also known as bindings, exist for different
environments. Their common use of the JXTA protocols means that they are all fully
interoperable.

JXTA, pronounced 'juxta', originates from the word juxtapose, which means to place something
side by side. JXTA reflects the operations by which peers establish temporary associations to
form a P2P network; they juxtapose themselves to each other. JXTA is not a software design
philosophy and it is not a software application. It is a set of protocols that software
developers can implement using their preferred technology to establish P2P
connections with other peers using identical technologies or different implementations of JXTA.

For example, a group of developers can implement JXTA in Visual Basic under
Windows XP. Ano ther g roup c o u l d d o t h e s a m e i n C + + u n d e r Linux and a
third group could implement the JXTA layer on a hand-held d e v i c e i n J a v a . T h e y
w o u l d a l l b e able to find each other on the Internet and to s ta r t exchang ing any k ind
o f information or services between them, despite the use of different underlying technologies.

A primary design principal of JXTA is to provide a platform that embodies the basic P2P network
functions. As such, JXTA overcomes potential shortcomings of many existing P2P systems:

• Interoperability — JXTA technology is designed to enable peers provisioning P2P
services to locate and communicate with one another independent of network

10

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

addressing and physical protocols.

• Platform independence — JXTA technology is designed to be independent of
programming languages, network transport protocols, and deployment platforms.

• Ubiquity — JXTA technology is designed to be accessible by any device with a digital
heartbeat, not just PCs or a specific deployment platform.

One common characteristic of peers in a P2P network is that they often exist on the edge of the
regular network, the edge often being occasionally connected devices that are assigned non static
addresses (e.g. DHCP). Because they are subject to unpredictable connectivity with potentially
variable network addresses, they are outside the standard scope of DNS. JXTA empowers peers
on the edge of the network by provisioning a globally unique peer addressing scheme that is
independent of traditional name services. Through the use of JXTA IDs, a peer can migrate
across physical networks, changing transports and network addresses, even being temporarily
disconnected, and still be addressable by other peers.

The JXTA protocols are designed to be independent of transport protocols and make few
assumptions about network transportation mechanisms between computers and
electronic devices. In other words, JXTA does not take the responsibility of explaining how
messages should physically be exchanged between peers or from a technical point-of-view.

JXTA imposes a common structured language to issue and exchange messages between
peers:XML (Extensible Markup Language). Although this language is readable by human beings,
which is a benefit, its verbosity has often been pointed as a weakness regarding
application performance. XML documents are usually bigger than traditional binary
data documents containing the same amount of information. This issue can be me mitigated
by the use of data compression within XML documents.

The fact that JXTA defines its protocols independently from any other technologies and that it has
chosen a neutral technology to communicate messages between peers implementing its protocols
guarantees its universality. Of course, its implementation on specific platforms and the choice of a
network transportation layer between peers creates specific technical issues which
have to be solved by each implementation of JXTA locally. This preserves its universality.

Conceptually, JXTA is consists of three logical layers:
1. Platform. Th is layer i s the base o f JXTA and con ta ins the imp le mentation

of the minimal and essential functionalities required to perform P2P networking.
Ideally, JXTA-enabled peers will implement all JXTA functionalities, although they are not
required to. This layer is also known as the core layer.

2. Services. This layer contains additional services that are not absolutely necessary for a
P2P system to operate, but which might be useful. For example: file sharing,
PKI infra-structures, distributed files systems, etc... These services are not part
of the set of services defined by JXTA.

3. Applications. P2P applications are built on top of the service layer. However, if I develop a
file sharing application and let other JXTA based applications make requests to my
app l i ca t ion , the o ther app l i ca t ions w i l l pe rce ive me as a serv ice .
There fo re , the border between a service and an application depends on one's
perspective.

JXSE is the open Source Java implementation of the JXTA protocols standard edition.

11

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 3.2 Microsoft Windows P2P

Microsoft has not been oblivious to the emergence of P2P, and has been developing its own tools
and technologies to use it. You can use the Microsoft Windows Peer - to - Peer Networking
platform as a communication framework for P2P applications. This platform includes the important
components Peer Name Resolution Protocol (PNRP) and People Near Me (PNM). Also, version
3.5 of the .NET Framework introduced a new namespace, System.Net.PeerToPeer , and several new
types and features that you can use to build P2P applications yourself with minimal effort.

Microsoft .NET framework can be used in the development of P2P systems. Features include:
• All of the P2P code is based on the .NET framework.
• Messages sent between peers is serialized as XML.
• Objects can be shared and accessed by peers.
• A discovery service has been implemented using .NET.

There are Microsoft resources showing the peer discovery as well as a simple chat application. Of
course, the focus of the Microsoft initiative are web services, and several examples illustrate
building services that peers can use .

The Microsoft Windows Peer - to - Peer Networking platform is Microsoft ’ s implementation of
P2P technology. It is part of Windows XP SP2, Windows Vista, and Windows 7, and is also
available as an add - on for Windows XP SP1. It includes two technologies that you can use when
creating .NET P2P applications:

• The Peer Name Resolution Protocol (PNRP), which is used to publish and resolve peer
addresses

• The People Near Me server, which is used to locate local peers (currently for Vista and
Windows 7 only)

You can of course use any protocol at your disposal to implement a P2P application, but if you are
working in a Microsoft Windows environment it makes sense to at least consider PNRP. There
have been two versions of PNRP released to date. PNRP version 1 was included in Windows XP
SP2, Windows XP Professional x64 Edition, and Windows XP SP1 with the Advanced Networking
Pack for Windows XP. PNRP version 2 was released with Windows Vista, and was made
available to Windows XP SP2 users through a separate download (see KB920342 at
support.microsoft.com/kb/920342). Windows 7 also uses version 2. Version 1 and version 2 of
PNRP are not compatible, and this chapter covers only version 2.

In itself, PNRP doesn’ t give you everything you need to create a P2P application. Rather, it is one
of the underlying technologies that you use to resolve peer addresses. PNRP enables a client to
register an endpoint (known as a peer name) that is automatically circulated among peers in a
cloud. This peer name is encapsulated in a PNRP ID. A peer that discovers the PNRP ID is able
to use PNRP to resolve it to the actual peer name, and can then communicate directly with the
associated client.

PNRP IDs are 256 - bit identifiers. The low - order 128 bits are used to uniquely identify a
particular peer, and the high - order 128 bits identify a peer name. The high - order 128 bits are a
hashed combination of a hashed public key from the publishing peer and a string of up to 149
characters that identifies the peer name. The hashed public key (known as the authority)
combined with this string (the classifier) are together referred to as the P2P ID. It is also possible
to use a value of 0 instead of a hashed public key, in which case the peer name is said to be
unsecured (as opposed to secured peer names, which use a public key).

12

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

The PNRP service on a peer is responsible for maintaining a list of PNRP IDs, including the ones
that it publishes as well as a cached list of those it has obtained by PNRP service instances
elsewhere in the cloud. When a peer attempts to resolve a PNRP ID, the PNRP service either
uses a cached copy of the endpoint to resolve the peer that published the PNRP or it asks its
neighbors if they can resolve it. Eventually a connection to the publishing peer is made and the
PNRP service can resolve the PNRP ID.

Note that all this happens without you having to intervene in any way. All you have to do is ensure
that peers know what to do with peer names after they have resolved them using their local PNRP
service.

Peers can use PNRP to locate PNRP IDs that match a particular P2P ID. You can use this to
implement a very basic form of discovery for unsecured peer names. This is because if several
peers expose an unsecured peer name that uses the same classifier, the P2P ID will be the same.
Of course, because any peer can use an unsecured peer name you have no guarantee that the
endpoint you connect to will be the sort of endpoint you expect, so this is only really a viable
solution for discovery over a local network.

A cloud is maintained by a seed server, which can be any server running the PNRP service that
maintains a record of at least one peer. Two types of clouds are available to the PNRP service:

• Link local — These clouds consist of the computers attached to a local network. A PC may
be connected to more than one link local cloud if it has multiple network adapters.

• Global — This cloud consists of computers connected to the Internet by default, although it
is also possible to define a private global cloud. The difference is that Microsoft maintains
the seed server for the global Internet cloud, whereas if you define a private global cloud
you must use your own seed server. If you use your own seed server you must ensure that
all peers connect to it by configuring policy settings.

With Windows 7, PNRP makes use of a new component called the Distributed Routing Table
(DRT). This component is responsible for determining the structure of the keys used by PNRP,
the default implementation of which is the PNRP ID previously described. By using the DRT API it
is possible to define an alternative key scheme, but the keys must be 256 - bit integer values (just
like PNRP IDs). This means that you can use any scheme you want, but you are then responsible
for the generation and security of the keys. By using this component you can create new cloud
topologies beyond the scope of PNRP, and indeed, beyond the scope of this chapter as this is an
advanced technique.

Windows 7 also introduces a new way of connecting to other users for the Remote Assistance
application: Easy Connect. This connection option uses PNRP to locate users to connect to. Once
a session is created, through Easy Connect or by other means (for example an e - mail invitation),
users can share their desktops and assist each other through the Remote Assistance interface.

 3.3 The Peer-to-Peer Trusted Library

One of the well-known libraries is called the Peer-to-Peer Trusted Library (PtPTL) [3][4]. This
library is open source, and its goal is to provide innovation in the security arena as it relates to
P2P systems.

P2P has been described as “an anarchistic threat to the current Internet” (David Streitfeld, The
Washington Post, July 18, 2000), and Marc Andreesen has called P2P software a “benevolent

13

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

virus.”

The potential security concerns for P2P software can be categorized as follows:
• · Reputation - copyright infringement
• · Denial of Service - bandwidth and storage consumption
• · Security Holes
• · Confidentiality - file sharing
• · Malware - trojan horse and virus distribution
• · Information Gathering - disclosure of IP and MAC addresses, connection speed

The PtPTL is designed to provide the following:
• Digital certificates
• Peer authentication
• Secure storage
• Public-key encryption
• Digital signatures
• Digital envelopes
• Symmetric-key encryption

PtPTL conforms to, and includes support for, the following standards:
• X.509 digital signatures
• PKCS#1 (RSA cryptography)
• PKCS#5 (password-based cryptography)
• PKCS#7 (digital envelopes)
• PKCS#12 (personal information exchange)
• RFC 1421 (privacy enhanced mail format)
• Various standard symmetric encryption algorithms
• HTTP

The code is designed to execute on both the Windows and Linux operating systems. Numerous
examples are provided, and full API documentation is available. As a replacement to secure
communication using SSL, the PtPTL provides support for more than just client-server network
topologies. Note that PtPTL is not a P2P system or toolkit—it is designed to add trust to a P2P
system.

 3.4 JINI

Jini technology [5] is a service oriented architecture that defines a programming model which both
exploits and extends Java technology to enable the construction of secure, distributed systems
consisting of federations of well-behaved network services and clients. Jini technology can be
used to build adaptive network systems that are scalable, evolvable and flexible as typically
required in dynamic computing environments. Jini offers a number of powerful capabilities such as
service discovery and mobile code.

The term Jini refers to both a set of specifications and an implementation; the latter is referred to
as the Jini Starter Kit. Both the specifications and the Starter Kit have been released under the
Apache 2.0 license and have been offered to the Apache Software Foundation's Incubator.

Jini provides facilities for dealing with some of the fallacies of distributed computing, problems of
system evolution, resilience, security and the dynamic assembly of service components. Code

14

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

mobility is a core concept of the platform and provides many benefits including non-protocol
dependence.

One of the goals of Jini is to shift the emphasis of computing away from the traditional disk-drive
oriented approach, to a more network oriented approach. Thus resources can be used across a
network as if they were available locally. Jini is based on Java, and is similar to Java Remote
Method Invocation but more advanced. Jini allows more advanced searching for services, through
a process of discovery of published services (making Jini akin to the service-oriented architecture
concept).

There are three main parts to a Jini scenario. These are the client, the server, and the lookup
service.

The service is the resource which is to be made available in the distributed environment. This can
include physical devices (such as printers or disk drives) and software services (for example a
database query or message service). The client is the entity which uses the service.

JXTA effectively abstracts the network allowing for P2P, Jini, on the other hand is a federation of
distributed software components, which sometimes do communicate in a P2P fashion (and
sometimes do NOT). To the casual observer, both have some overlapping functions, but this is
not actually the case. For example, both Jini and JXTA have lookup facilities but in Jini one is
looking for an Java Interface (think of this as looking up for a function, a service) while in JXTA
one looks for a peer by some name or inside a group. The JXTA type of lookup is more like trying
to find an IP based on a name using a DNS, since JXTA abstracts the network this is a more than
required functionality.

So JXTA connects the peers by allowing them to find each other and providing communications
channels called pipes, all this is done with a protocol based on XML messages and it can cross
firewalls easily. Over these pipes one can communicate using the protocol one desires, and
peers can be running any programing language on any platform.
In conclusion JXTA is a powerful communication tool, and is very useful in that it allows crossing
of firewalls.

 3.5 Enterprise service bus (ESB) - Mule

An enterprise service bus (ESB) is a software architecture model used for designing and
implementing the interaction and communication between mutually interacting software
applications in Service Oriented Architecture. As a software architecture model for distributed
computing it is a speciality variant of the more general client server software architecture model
and promotes strictly asynchronous message oriented design for communication and interaction
between applications. Its primary use is in Enterprise Application Integration of heterogenous and
complex landscapes.

An ESB transports the design concept of modern operating systems to networks of disparate and
independent computers. Like concurrent operating systems an ESB caters for commonly needed
commodity services in addition to adoption, translation and routing of a client request to the
appropriate answering service.
The prime duties of an ESB are:

• Monitor and control routing of message exchange between services
• Resolve contention between communicating service components

15

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

• Control deployment and versioning of services
• Marshal use of redundant services
• Cater for commonly needed commodity services like event handling and event

choreography, data transformation and mapping, message and event queuing and
sequencing, security or exception handling, protocol conversion and enforcing proper
quality of communication services

An ESB generally provides an abstraction layer on top of an implementation of an enterprise
messaging system. In order for an integration broker to be considered a true ESB, it would need
to have its base functions broken up into their constituent and atomic parts. The atomic
components would then be capable of being separately deployed across the bus while working
together in harmony as necessary.

ESB is a modular and component based architecture. It assumes that services are generally
autonomous and availability of a service at a certain moment of time cannot be guaranteed.
Therefore messages need to be routed consequently through the message bus for buffering
(message queuing to allow inspection and enhancement of content as well as filtering, correction
and rerouting of message flow.

Mule is a lightweight ESB and integration framework. It can handle services and applications
using disparate transport and messaging technologies. The platform is Java-based, but can
broker interactions between other platforms such as .NET using web services or sockets. The
architecture is a scalable, highly-distributable object broker that can seamlessly handle
interactions across legacy systems, in-house applications and almost all modern transports and
protocols.

On the other hand, JXTA is open source and sents text/binary messages or streams over
unreliable disparate networks to peers belonging to specific groups. Strictly speaking, JXTA is a
set of open XML-based protocols used to create logical networks on top of physical networks.
JXTA has several bindings that implement these open XML protocols to accommodate different
platforms, such as jxta-jxse, jxta-c and jxta-jxme. Mule is used to send, transform and route
text/binary/POJOs to one or many endpoints on unreliable disparate networks. Both Mule and
JXTA have overlapping features such as providing network independence or a platform to abstract
the network from the application. They also provide communication and services to a group of
authorized peers over secure channels and the ability to emulate various network topologies: P2P,
client/server, service buses.

The most obvious difference between the two technologies is that Mule is a "high-level"
technology designed for quick implementation to solve many distributed application problems like
having two legacy applications communicate over a network with each other in different data
formats or protocols. JXTA, in comparison, is a "low-level" platform that provides a set of its own
networking protocols that the developer must implement to communicate with its remote peers. As
you might expect, JXTA has a higher learning curve and has more parts to manage than Mule
does, but as you also might expect, JXTA provides finer control over the network semantics and
can reach peers through more firewall and NAT configurations than Mule

 3.6 Unmanaged Internet Architecture (UIA)

The Internet’s architecture, designed in the days of large, stationary computers tended by
technically savy and accountable administrators, fails to meet the demands of the emerging
ubiquitous computing era. Nontechnical users now routinely own multiple personal devices, many

16

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

of them mobile, and need to share information securely among them using interactive, delay-
sensitive applications.

Unmanaged Internet Architecture (UIA) is a novel, incrementally deployable network architecture
for modern personal devices, which reconsiders three architectural cornerstones: naming, routing,
and transport. UIA augments the Internet’s global name system with a personal name system,
enabling a user to build personal administrative groups easily and intuitively, to establish secure
bindings between his and other users’ devices, and to name his devices and his friends much like
using a cell phone’s address book. To connect personal devices reliably, even while mobile,
behind NATs or firewalls, or connected via isolated ad hoc networks, UIA gives each device a
persistent, location-independent identity, and builds an overlay routing service atop IP to resolve
and route among these identities. Finally, to support today’s interactive applications built using
concurrent transactions and delay-sensitive media streams, UIA introduces a new structured
stream transport abstraction, which solves the efficiency and responsiveness problems of TCP
streams and the functionality limitations of UDP datagrams.

UIA is a distributed name system and ad-hoc routing infrastructure which provides zero-
configuration connectivity among users' mobile devices without the use of centralized servers.
Each user has a local namespace which is shared among all devices and is always available on
every device. Users can assign personal names to each of their devices, and can also name other
users and access their friends' namespaces. UIA devices automatically maintain connectivity with
other named devices, both in ad-hoc networks and globally on the Internet when available.

UIA [1] provides strong permanent location independent device identifiers, and allows users to
securely bind personal names to devices. Each device creates a unique public/private keypair,
and hashes the public key to create an endpoint identifier (EID), which acts as the permanent
device address. UIA constructs an overlay network and offers a traditional socket API to establish
connections. The UIA router forwards connections over the authenticated and encrypted overlay
network to the destination. UIA’s routing overlay supports IP mobility along with seamless
operation though NATs and most firewalls.

 3.7 MACEDON and Mace

MACEDON is an infrastructure to simplify the design, development, evaluation, and comparison of
large-scale overlays. In MACEDON, researchers specify algorithm behavior in terms of event-
driven finite state machines (FSMs) consisting of system states, events (e.g. message reception,
remote node failure, etc.), and transitions indicating the actions to take in response to events.
From this high level specication, MACEDON generates code for a variety of experimentation
infrastructures leveraging shared (but extensible) libraries. The libraries implement much of the
base overlay maintenance functionality, such as thread and timer management, network
communication, debugging, and state serialization. As such, improvements in system support can
be equally applied to all protocols. Ultimately, these system mechanisms enable fair comparisons
of the merits of individual algorithms.

MACEDON [2][6] and Mace [7] are overlay construction software which support multiple routing
algorithms. A user describes an algorithm in MACEDON language, which is like C/C++ but
specific to the overlay description. MACEDON translates the description into executable C++
code. The generated code communicates using TCP or UDP. MACEDON provides distributed
hash table (DHT) implementations, i.e., Chord and Pastry. MACEDON introduces a domain-
specific language and thus, involves a higher learning cost for dedicated language.

17

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Experiments with MACEDON have been performed on an Internet emulator, ModelNet, where the
number of underlying computers ranged from 2 to 50 in the emulation. The original length of IDs in
Chord is 160 bits and 128 bits in Pastry, but both are 32 bits in MACEDON. The integer type int
the dedicated language provides is 32 bits and the shortened ID length might be a natural
consequence of this. Mace [7] is a successive project following MACEDON.

Overlay algorithms typically target specific types of applications. An important characteristic of
their implementation is the API they export. For example, a multicast overlay must export a send
function to disseminate data through the overlay.

A standard API enables MACEDON applications to select underlying overlays without modication.
In general, overlays support multicast or route primitives that route data from a source to
destination(s) through the overlay. Typically, overlays provide upcalls at each routing hop so that
intermediate nodes can perform application-specific functionality. For example, an intermediate
Scribe node receiving a join request for a group will add the group to its list of multicast sessions
and propagate the request toward the destination, thus building a reverse-path distribution tree.

Protocol layering (Figure 3) is central to implementing algorithms in MACEDON. The MACEDON
protocol stack is divided into three components: application, multiple protocol layers, and network
substrate (ns orTCP/IP). Much like the TCP/IP stack, higher layers in MACEDON use the services
of lower layers. Bullet, for example, uses a simple randomly constructed tree, RandTree, for
baseline data distribution.

18

Figure 3. The MACEDON protocol stack

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Figure 4 illustrates a simplied version of the API that MACEDON overlays export. We provide an
extensible upcall and downcall mechanism to perform protocol-specific collaboration across layers
in the stack. As instances of this mechanism, we describe forward(), deliver(), and notify()
(extensible upcalls are handled using the generic handler). A node calls forward() once it makes a
message routing decision. Intermediate nodes can change the message or its destination or
quash the message altogether. The notify() upcall allows lower-layer protocols to inform higher
layers of changes in neighbor lists (a higher layer may require this direct knowledge). An
application optionally registers its upcall handlers with the macedon_register_handlers() function.
At least one handler is necessary if the application is to receive any data through the overlay
(having null handlers would be used when evaluating just the construction process of dierent
overlays).

Figure 4 also shows macedon_init() that initializes an overlay identied by the application-specied
well-known protocol value (akin to protocol values in IP). Once an application initializes and
registers its handlers, it can send and receive data. For unicast data, the overlay must implement
routing functionality that determines which neighbor receives data packets next. The
macedon_route() function accepts a message and destination in the form of a macedon key,
meaning it is not necessarily an IP address (it could be a hash of an IP address or name). A
similar primitive is macedon_routeIP() that enables native IP-based communication with an IP
host.

19

Figure 4. MACEDON API

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Multicast primitives include macedon_create_group() to create sessions. Its sole input is the
value, or handle, associated with the session (group). Receivers join and leave a session with
macedon_join() and macedon_leave(), specifying the group value. Similar to macedon_route(),
macedon_multicast() requires a session's ID instead of a node's destination address.
macedon_collect() introduces a new primitive to traditional overlay APIs. It essentially performs
the opposite of multicast, where data originates at non-root nodes and is collected via the
distribution tree toward the root. Intermediate nodes can summarize data in an application-specific
manner, ultimately delivering a global summary to the tree's root. We believe that a number of
applications could benet from this communication paradigm.

Mace is a software package for building distributed systems. It builds upon the ideas from its
parent project, MACEDON, by broadening the scope of what can be designed with it, and by
removing many limitations of the original system.

Mace includes a compiler that translates service specifications into C++ code, libraries designed
to be linked together with generated services, a distribution of existing services ready to be used
by other services or applications, and a few basic applications to run the services contained
within.

Mace seeks to transform the way distributed systems are built by providing designers with a
simple method for writing complex but correct and efficient implementations of distributed
systems. To that end, we are always considering new libraries and language features which could
be used to make building, designing, debugging, or verifying distributed systems more powerful,
flexible, simple, or natural.

Constructing distributed systems would be simplified by the ability to compose simple distributed
computing primitives into more complex behavior. For instance, many distributed applications
would benefit from failure detection, consensus, multicast, barriers, and key-based routing.
However, without well-defined API’s, it is difficult to reuse implementations or to leverage the
benefits of an improved implementation of a given logical subsystem. In this paper, we describe
initial efforts to define required API’s to support complex, multi-layer distributed systems.

Current programming languages are not well suited to the requirements of distributed systems.
While there are communication libraries and class hierarchies in languages such as C++, Java,
and Python, they typically target client/server communications (e.g., HTTP or XMLRPC) and still
provide relatively primitive support for failure detection and recovery. Further, we observe that the
higher-level structure of many distributed systems is logically event and state-based. Each node
maintains some state that may be modified as a result of a series of events, typically message
reception and timer expiration. Individual nodes respond to events by modifying their state and
perhaps transmitting their own message to one or more destinations. While this high level
structure is simple to describe, it is error prone to implement. Further, managing asynchrony still
remains a challenge. Delivering high performance often requires careful consideration of
appropriate locking primitives, ensuring that individual operations do not block, and assigning the
appropriate number of threads to handle logically concurrent tasks. Of course, all of this can be
programmed in existing languages such as C++ and, to a lesser extent, Java. Providing the
appropriate language primitives can both significantly simplify the code and reduce opportunities
for errors.

20

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 3.8 Ezel

EZEL is the Easy Entry Library for JXTA. It's goal is to enable a client-server developer, who has
little or no JXTA or P1P experience, to create a JXTA service in a single afternoon.

This library provides a client/server-like API that hides implementation details and provides
reasonable and functional defaults. Complexity for the uninitiated is greatly reduced by folding
away the options. It also encapsulates many typical techniques that are used in everyday JXTA
programming (creating and publishing advertisement, searching for advertisements, creating and
working with structured documents, working with peergroups, etc.) in several collections of APIs,
making it easier for new developers to build JXTA applications.

Ezel seems to be an abandoned project and is no longer supported in the current version of jxta.

 3.9 Microsoft Groove

Microsoft Groove is a collaboration suite ideal for small businesses and companies with no single
physical base. It has been used by emergency relief agencies and top consultants and is a
valuable tool for anyone who needs to work offline or within a disparate community.

At its core Groove is a simple idea: to create a shared workspace allowing users to distribute files
and folders across a team. The cache of files that is built up means that members of the team do
not have to be online to examine and amend crucial information, thus making the process
convenient and hassle free.

Another advantage of Groove is that it bypasses constrictive security clearance issues. Not all
consultants working for a particular company will have the same levels of security clearance,
which can make communication and interaction difficult. As Groove is a peer-to-peer platform it
works without a server, users simply invite others to join the group and when they accept they
become part of the workspace.

Once in the virtual workspace all active team members can edit and amend documents in
synchronicity. Multiple versions of the initial document appear with the alterations that each team
member is making at that particular time. Various tools can be deployed in line with the workspace
being utilised, such as a calendar, web browser and sketchpad and there is also access to
Microsoft SharePoint's document library.

With team members potentially scattered across the globe and the greater freedom afforded by
the peer-to-peer model you could be forgiven for thinking that Groove was lacking in cohesion and
structure. However, there is a Microsoft Groove server available to team leaders and those
organising workgroups. This server enables centralised control of virtual workspaces within
Groove allowing for a focused approach to file sharing and amendment.

In an age of ever increasing globalisation where colleagues are not all sat at office desks during
the working day Microsoft Groove is an invaluable program that brings people together quickly
and conveniently to achieve a shared business goal. Collaboration software is now all around us
with social networking sites like Facebook and Twitter operating on similar principles. Groove
harnesses this hugely popular mass community interaction and utilises it for a business purpose.
Yet it would be a mistake to think that just because you can create a group on Facebook you can
master Groove just like that. While far from inaccessible Groove is nonetheless a strikingly

21

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

different addition to Microsoft Office and a high-quality training course is advised in order to get
the most out of its many functions.

 3.10 Summary

For the majority of developed P2P network protocols, implementations and API’s exist to aid
application developers. The complexity of these APIs varies significantly, from simple network-
oriented functionality provided by Gnutella [15] APIs such as Jtella [16], and Chord[8] APIs such
as Accord[17], to the more complex and application-oriented functionality provided by JXTA [13]
and Groove[18]. Each of these APIs require that developers possess detailed understanding of
the underlying P2P technology. Due to the widely recognized [10] lack of standardisation within
the P2P community, the structure of these APIs varies considerably, to the extent that, it is rarely
the case that experience and understanding of one API can be readily applied to another.

To address the lack of standardisation of P2P technologies, recent work has considered building
abstractions of underlying P2P technologies to create common interfaces for developers. Notable
attempts to provide abstractions of heterogeneous P2P technologies include the Common API for
Structured P2P Systems [19], PROST [20] and the Open Overlays project [21].

The Common API for Structured P2P Systems provides a consistent abstraction for structured
overlays such as Pastry [22], Past [23] and SplitStream [24]. The Common API for Structured P2P
Systems provides three different abstractions, one for each major area of system functionality.
These abstractions include: distributed hash table, distributed object location and retrieval, and
cast (i.e. multicast and anycast).

Prost provides an abstraction of overlay networks by implementing the previously described
common API upon which a supporting infrastructure for pluggable services is layered. The design
of PROST is influenced heavily by lower level programmable networking approaches. All
applications and services for PROST are written as plug-ins known as peer-lets. PROST also
allows these plug-ins to be dynamically deployed, installed and instantiated.

The Open Overlays project provides a common abstraction in which diverse overlay networks may
be modelled using a consistent abstraction provided by the ‘overlay’ component framework. This
framework forms a powerful building block which can be used to assemble systems composed of
heterogeneous overlays. For example, using the open overlays component framework, any
unstructured overlay network could be layered on top of any structured overlay. Open Overlays is
implemented using the run-time reconfigurable OpenCOM middleware.

The aforementioned approaches, however, focus on providing support for the P2P network
developer rather than the P2P application developer. In contrast Ezel [25] and Groove provide
more application-centric APIs. Ezel implements an abstraction of JXTA, reducing the complexity of
the standard API by replacing it with a simpler cut-down version. However, while Ezel does reduce
JXTA’s complexity, it still requires the developer to understand JXTA’s core concepts and
principles in order to be able to use it (for example, understanding how pipes are used for
message communication). Groove is more sophisticated in that it provides an integrated
development environment in which P2P applications can be created. Groove provides a higher
level of abstraction, removing the need for developers to understand the underlying technology.
However, Groove achieves this by constraining what the developer can build, with the primary
focus being on groupware applications such as Instant Messengers and shared workspaces. For
applications that fall outside this domain, for example, distributed computation, the usefulness of
Groove is limited.

22

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 4 Platform selection process and criteria
The entire set of the above candidates P2P tools and platform have been evaluated in order to
select the most appropriate one as a base technology for P2P. This section presents the criteria
used for evaluating them. The employed criteria includes a subset of the functional and non
functional requirements of PeerAssist, which are mainly related to networking functions such as
connectivity, communication grouping, interoperability, openness, serviceability, security, trust,
scalability, efficiency, etc.

 4.1 Connectivity, communication, grouping

A P2P system enables entities at the edges of the network to communicate and share services
and resources without the need of centralized control. The selected technology will provide or
facilitate the following:

R1. The system shall allow users to search for peers.

R2. The system shall allow users to communicate with each other through specific channels.

R3. The system shall allow users to create and participate in groups of users.

R7. The system shall find and propose matching peers to join an open group.

R8. The user must be allowed to select specific peers for a closed, private community.

R9. The users must be allowed to accept or reject group membership invitations.

R10. The users must be allowed to join open (public access) groups, even if they were not initially
matched and invited by the system.

R11. The users must be allowed to leave a group at any time.

R14. The system shall allow users to search for groups.

R15. The system shall allow the owner of a group to delete it, in which case notifications are sent
to its members.

R59. The system shall support the creation of P2P communities based on semantically retrieved
information.

Every client participating in a P2P network application must be able to perform the following
operations to overcome these problems:

• It must be able to discover other clients.
• It must be able to connect to other clients.
• It must be able to communicate with other clients.

The discovery problem has two obvious solutions. You can either keep a list of the clients on the
server so clients can obtain this list and contact other clients (known as peers), or you can use an
infrastructure (for example PNRP) that enables clients to find each other directly.

23

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

The connection problem is a more subtle one, and concerns the overall structure of the networks
used by a P2P application. If there exists one group of clients, all of which can communicate with
one another, the topology of the connections between these clients can become extremely
complex. Performance can often be improved by having more than one group of clients, each of
which consists of connections between clients in that group, but not to clients in other groups. If
these groups can be made locale - based one will get an additional performance boost, because
clients can communicate with each other with fewer hops between networked computers.

Communication is perhaps a problem of lesser importance, because communication protocols
such as TCP/IP are well established and can be reused here. Discovery, connection, and
communication are central to any P2P implementation.

Groups of peers that are connected to each other are known by the interchangeable terms
meshes, clouds, or graphs. A given group can be said to be well - connected if at least one of the
following statements applies:

• There is a connection path between every pair of peers, so that every peer can connect to
any other peer as required.

• There are a relatively small number of connections to traverse between any pair of peers.
• Removing a peer will not prevent other peers from connecting to each other.

 4.2 Service, Interoperability, Openness and Extensibility

A modular P2P overlay architecture will be built that resides between the network and the service
layer. The P2P layer will be responsible for the transparent and efficient communication of the
SOAP messages described in each of the services. This network overlay will provide efficient
routing and the formation and maintenance of virtual communities.

R13. The communities shall provide facilities to enable interaction between users: communication
channels, data sharing, etc.

R16. The system shall allow users or 3rd parties to publish services.

R17. The system shall allow users or 3rd parties to advertise services.

R18. The system shall allow users to search for services.

R19. The system shall allow users to use (i.e. book) a service.

R20. The system shall allow users to rate a service.

R21. The system shall allow users to search content in the platform.

R22. The system shall allow users to publish content in the platform.

R23. The system shall provide users with content suggestions.

R24. The system shall allow users to advertise items (events, communities…).

R25. The system shall allow users to receive advertisements based on filtering criteria.

24

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

R30. The system shall allow the user to edit the data on his/her profile.

R31. The system shall allow the user to add, delete or modify peers on his/her contact list.

R32. The system shall help the user to perform tasks through a Personal Assistant.

R60. The system shall provide remote service discovery and management. Service management
and discovery will be independent of the network layer.

R61. The system shall provide identity management.

R65. The P2P layer shall provide an application agnostic overlay.

R66. It should be a tailored overlay to the needs raised by the services and applications running
on top.

R67. It will be implemented in the service layer using technologies already in place through the
Service Oriented Architecture (SOA). Through this mechanism services can be implemented in an
efficient cross platform manner that does not rely on the underlying network infrastructure.

 4.3 System architecture

The P2P layer is a distributed system architecture paradigm that will provide all desired system
characteristics. P2P networks are typically used for largely connecting nodes via ad-hoc
connections. The system that will be built, will be secure, scalable and efficient and it will support
a wide range of end-user devices as described in the following sections.

R34. The system shall be reliable.

 4.4 Efficiency and scalability

The P2P architecture, and the jxta 2 network topology (a smaller population of rendezvous peer
among the edge peers of the system), reduce the network traffic and makes the system work in a
high performance and scalable manner.

R33. The system's latency shall be within acceptable limits.

R64. The P2P overlay network shall be scalable, decentralized, extensible and flexible.

 4.5 Security and trust

JXTA implements TLS version 1.0 for transportation of messages between peer endpoints of the
JXTA network. This model is a clear message over communications channel mode. JXSE
guarantees that if a message between two peers has to be transmitted via a relay peer or via

25

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

other peers, these will not have access to the content of the message. JXTA security allows
advertisements and messages to be signed when stored or communicated between peers.

R6. All types of groups can be open (free access) or closed (only selected users are allowed).
However, the system may impose access restrictions in specific cases.

R35. The system shall be safe and secure on a technical layer and furthermore shall foster trust
mechanisms on a conceptual level.

R62. The system shall provide fundamental security services such as authentication,
confidentiality and integrity.

R63. The system shall support the enforcement of security policies.

R79. The system shall provide users authentication

R80. The user shall be able to set what personal information wants to share and with whom
he/she wants to share it

R81. The personal user's information shall be protected from unauthorized accesses

 4.6 OSGI

The Open Services Gateway initiative framework is a module system and service platform for the
Java programming language that implements a complete and dynamic component model.
Applications or components (coming in the form of bundles for deployment) can be remotely
installed, started, stopped, updated and uninstalled without requiring a reboot; management of
Java packages/classes is specified in great detail. Application life cycle management (start, stop,
install, etc.) is done via APIs that allow for remote downloading of management policies. The
service registry allows bundles to detect the addition of new services, or the removal of services,
and adapt accordingly.
R60. The system shall provide remote service discovery and management. Service management
and discovery will be independent of the network layer.

R64. The P2P overlay network shall be scalable, decentralized, extensible and flexible.

R65. The P2P layer shall provide an application agnostic communication overlay.

R66. It should be a tailored overlay to the needs raised by the services and applications running
on top.

R74. The services platform must support service life cycle management at runtime.

R87. The service platform must support communication using P2P networking.

R78. It may be supported to contact a central location for obtaining new services, security updates
etc. apart from the P2P network.

26

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 4.7 Support a wide range of end-user devices

The JXSE implementation of the JXTA platform and the JXME version for mobile devices, allows
different components of the system to run on a wide range of end user devices.

R68. The system shall support a wide range of end-user terminals in terms of processing power
and display capabilities.

R69. The hardware that will run the service platform must have adequate network interfaces to
communicate with other devices in the home network and the P2P network.

R72. Handheld device should be suitable (simple enough and lightweight) for use by the elderly.

 4.8 Why JXTA ?

JXTA is an open network computing platform designed for peer-to-peer (P2P) computing by
providing basic building blocks and services required to enable and “anything, anywhere”
application connectivity.

The name “JXTA” is not an acronym. It is short hand for juxtapose, as in side by side. It is a
recognition that P2P is juxtaposed to client-server or Web-based computing, which is today’s
traditional distributed computing model.

JXTA provides a common set of open protocols backed with open source reference
implementations for developing peer-to-peer applications. The JXTA protocols standardize the
manner in which peers:

• Discover each other
• Self-organize into peer groups
• Advertise and discover network resources
• Communicate with each other

• Monitor each other

The JXTA protocols are designed to be independent of programming languages and transport
protocols alike. The protocols can be implemented in the Java programming language, C/C++,
.NET, Ruby, and numerous other languages. Furthermore, they can be implemented on top of
TCP/IP, HTTP, Bluetooth, and other network transports while maintaining global interoperability.

The JXTA protocols enable developers to build and deploy interoperable P2P services and
applications. Because the protocols are independent of both programming language and transport
protocols, heterogeneous devices with completely different software stacks can interoperate with
one another. Using JXTA technology, developers can write networked, interoperable applications
that can:

• Find other peers on the network with dynamic discovery across firewalls and NATs
• Easily share resources with anyone across the network
• Create a group of peers that provide a service
• Monitor peer activities remotely
• Securely communicate with other peers on the network

Information on the JXTA technology can be found at the Project JXTA web site. Resources
include project information, documentation, mailing lists, source code, binaries, documentation,
and tutorials.

27

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5 JXTA

 5.1 Overview

The JXTA software architecture is divided into three layers, as shown in Figure 6.

• JXTA Core

The JXTA core encapsulates the minimal and essential primitives that are common to P2P
networking. It includes building blocks to enable key mechanisms for P2P applications,
including discovery, communication transports (including firewall and NAT traversal), the
creation of peers and peer groups, and associated security primitives.

• Services Layer

The services layer includes network services that may not be absolutely necessary for a
P2P network to operate, but are common or desirable in a P2P environment. Examples of
network services include searching and indexing, directory, storage systems, file sharing,
distributed file systems, resource aggregation and renting, protocol translation,
authentication, and PKI (Public Key Infrastructure) services.

• Applications Layer

The applications layer includes implementation of integrated applications, such as P2P
instant messaging, document and resource sharing, entertainment content management
and delivery, P2P E- mail systems, distributed auction systems, and many others.

The boundary between services and applications is not rigid. One customer's application can be

28

Figure 5: JXTA Software Architecture

Figure 6. JXTA Software Architecture

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

viewed as a service to another customer. The entire system is designed to be modular, allowing
developers to pick and choose a collection of services and applications that suits their needs.

The JXTA network consists of a series of interconnected nodes, or peers. A peer may be any
type of device from a sensor to a supercomputer or even a virtual process. Multiple peers may run
on a single physical device and, potentially, multiple physical devices could cooperate to act as a
single peer. The peers may be connected by any suitable networking protocol including TCP/IP,
HTTP, Bluetooth, GSM, etc.

Each peer provides a set of services and resources which it makes available to other peers.
Services are interactive programs and can include databases, authentication systems, chat
servers or almost any program that can be networked. Two types of services are common within
JXTA networks, peer services and group services. Peer services are those provided by a single
peer. Group services are services which are provided in either a federated, redundant or
cooperative way by the “whole group”. Each Peer service instance is normally independent of
other instances. Actions taken with one instance have no effect upon other instances. Each Peer
group service instance is normally a participant in a common instance. Actions taken with one
instance may (likely) have effects upon all instances.

All JXTA peers implement a small number of required core services and commonly also provide
several additional standard services. Each Peer Group includes as part of it's definition the set of
Group services which each peer must run in order to participate in the peer group.

A peer's resources are normally static (non-interactive) content which the peer either controls,
owns or even merely has a copy of. Resources can include files, documents, media,
advertisements, indexes but can also include real world resources such as switches, sensors and
printers.

JXTA peers advertise their services and resources using XML documents called advertisements.
Advertisements enable peers on the network to discover resources and services and to determine
how to connect to and interact with those services.

Peers can organize themselves into peer groups. A Peer group, loosely defined, is any set of
peers that provision and leverage a common set of services for a common purpose. There are two
key aspects to this definition-common services and common purpose. Two peer groups might
have the same set of services, for example a chat application, but different purposes, for example
politics chat and sports chat. Peer groups can be defined on almost any basis that developers or
deployers choose. For the preceding example the peer group could be redefined as providing a
chat application for multiple topics but located within an organization, for example a university
department. When defining a peer group the first two questions which must always be answered
are; “What peers are members of this group?”, and “What application or service are the peers
cooperating to provide?”.

JXTA peers use sockets and pipes to send messages to one another. JXTA sockets are reliable
bi-directional connections used for applications to communicate reliably. Pipes are an
asynchronous and unidirectional message transfer mechanism used for service communication.
Messages are simple XML documents whose envelope contains routing, digest, and credential
information. Pipes are bound to specific endpoints, such as a TCP port and associated IP
address.
Four essential aspects of the JXTA architecture that distinguish it from other distributed network
models are:

• The use of XML documents (advertisements) to describe network resources.
• Abstraction of pipes to peers, and peers to endpoints, without reliance upon a central

naming/ addressing authority such as DNS.
• A uniform peer addressing scheme (IDs).

29

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

• A decentralized search infrastructure based on Distributed Hash Table (DHT) for resource
indexing.

 5.2 Peer

A peer is any networked entity that implements one or more of the JXTA protocols. Peers can
reside on sensors, phones, and PDAs, as well as PCs, servers, and supercomputers. Each peer
operates independently and asynchronously from all other peers and is uniquely identified by a
Peer ID.

Peers publish one or more network addresses for use with the JXTA protocols. Each published
address is advertised as a peer endpoint, which identifies the network address. Peer endpoints
are used by peers to establish direct point-to-point connections between two peers.

Direct point-to-point network connections are not always available between peers. Intermediary
peers may be used to route messages to peers that are separated due to physical network
boundaries. The network boundaries can be natural boundaries such as Ethernet and Bluetooth
networks or artificially created due to network configuration. Artificial barriers can include NAT,
firewalls and proxies. The use of enlisted intermediate peers can and will change over time with
no impact on the JXTA application.

Peers are typically configured to spontaneously discover each other on the network to form
relationships known as peer groups, which can be transient or persistent in nature.

JXTA peers can be divided into three main types:

• Minimal-Edge peers: Peers that implement only the required core JXTA services and may rely
on other peers to act as their proxy for other services to fully participate in a JXTA Network.
The proxy peers act as proxy for the non-core services. Typical minimal-edge peers
include sensor devices and home automation devices,

• Full-Edge Peer: Peers that implements all of the core and standard JXTA services and can
participate in all of the JXTA protocols. These peers form the majority of peers on a JXTA
network and can include phones, PC's, servers, etc.

• Super-Peer: Peers that implement and provision resources to support the deployment and
operation of a JXTA network. There are three key JXTA Super Peer functions. A single
peer may implement one or more of these functions.

• Relay: Used to store and forward messages between peers that do not have direct
connectivity because of firewalls or NAT. Only peers which are unable to receive
connections from other peers require a relay.

• Rendezvous: Maintains global advertisement indexes and assists edge and proxied
peers with advertisement searches. Also handles message broadcasting.

• Proxy: Used by minimal-edge peers to get access to all the JXTA network functionalities.
The proxy peer translates and summarizes requests, responds to queries and
provides support functionality for minimal-edge peers.

These categories describe the most common peer confiugrations. Depending upon the application
and peer capabilities it may make sense to deploy the peers with a mix of functionality. For
example, it my be reasonable to deploy peers with full Discovery and Pipe functionality but require
a proxy for running group services.

30

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5.3 Peer group

A peer group is a collection of peers that have agreed upon a common set of services, or
interests. Peers self-organize into peer groups, each of which is uniquely identified by a peer
group ID. Each peer group establishes its own membership policy including open (anybody can
join) to highly secure and protected (requiring credentials to gain membership).

Peers can belong to more than one peer group simultaneously. By default, the first group that is
instantiated is the Network Peer Group. All peers belong to the Network Peer Group and may
choose to join additional peer groups at any time.
The JXTA protocols describe how peers may publish, discover, join, and monitor peer groups;
they do not dictate when or why peer groups are created. A group join is simply instantiating all
the peer group services defined by the peer group. There are several motivations for creating peer
groups:

• To create a secure environment

Groups create a local domain of control in which a specific security policy can be
enforced. The security policy may be as simple as a plain text user name/password
exchange, or as sophisticated as public key cryptography. Peer group boundaries
permit member peers to access and publish protected content. Peer groups form logical
regions whose boundaries limit access to the peer group's resources.

• To create a scoping environment

Groups allow the establishment of a local domain of specialization. For example, peers
may group together to implement a document sharing network or a CPU sharing
network. Peer groups serve to subdivide the network into abstract regions providing an
implicit scoping mechanism. Peer group boundaries define the search scope when
searching for a group’s content.

• To create a monitoring environment

Peer groups permit peers to monitor a set of peers for any special purpose (e.g.,
heartbeat, traffic introspection, or accountability).

Groups can also form a hierarchical parent-child relationship, in which each group has a single
parent. Search requests are propagated within the group. The advertisement for the group is
published in the parent group in addition to the group itself.

 5.4 Service

The JXTA protocols are implemented with the help of services and modules. These are the basic
entities representing, 'things' a JXTA peer must know in order to operate on the JXTA network.
Services and modules are constituents of the glue that makes the JXTA network stick
together. The other constituents are standard messages defined in JXTA. At first, the
distinction between modules and services in JXTA is not obvious. The relationship
between both concepts is not explicitly described in the protocol specifications. However, a
module is defined as “an abstraction used to represent any piece of code used to implement a
behavior in the JXTA world”.

The implicit link between modules and services is that each service is ultimately
implemented as a module. Services can be immediately loaded and available on the local peer,
or can be accessed remotely using a pipe or another proxy module. Eventually, an authentication
module can be used to check the communication with the service. The code can also be fetched
from a remote location and loaded later. The publication of a service advertisement should contain
all necessary information explaining how to use it or invoke it.
The JXTA specification 2.0 mention two types of services:

31

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

• Peer Services, of which individual instances run on each peer. If a peer goes down, the
individual service goes down too. Each instance of the service should publish its own
advertisement.

• Peer Group Services are published within peer group advertisements. Instances of these
services run on each peer participating in the peer group. Typically, these
services may communicate with each other.

All these types and sub-types of services, together with their publication processes, can be
confusing. One should remember that, in practice, peers are modules creating peer group
modules and that services (which are modules too) are attached to peer groups. A peer
communicates and operates with other peers using the services attached to the peer groups it has
created. Customized or additional services can be loaded on peer groups created by the peer too.

JXTA defines core and standard services, these implement the protocols that we will
describe later:

• Access Service. This is the service verifying the credentials and information of
a request to access resources. .

• Discovery Service. This is the service allowing tribes to search for other tribes or
peer groups within a peer group. Technically speaking, they will search for the
advertisements representing them. The discovery service can also help searching
for other types of resources, such as routes to islands or trading routes between tribes.
Newcomers to JXTA often believe that discovery means finding out whether a
peer is connected online. But in the JXTA parad igm, d iscovery means
d iscovery o f adver t i semen ts descr ib ing resources (such as peers, peergroups,
services, etc...) within a given peer group. It is not the instance of these resources
themselves. It is like confusing a Class and an object instance of this class in the Java
programming language.

• Endpoint Service. This service is responsible for transmitting a message from one peer to
another peer.

• Membership Service. This is the service used to allow or reject a new request for
membership in a peer group. It can be as simple as always approving a new member or
more complex, like using a voting procedure. A tribe willing to join a group must first find
one of its members and request to join the group.

• Peer Info Service. This service helps peers find about the status of other peers in a
peer group.

• Pipe Service. This service creates trading routes between one or many tribes
(not islands) belonging to the same peer group.

• Rendezvous Service. This service is operated by peers acting as rendezvous to facilitate
the efficient forwarding of queries to peers belonging to the peer group.

• Resolver Service. This service is used to address queries made by a tribe leader to
another tribe leader and to collect responses.

Some services implement core specifications that all JXTA implementations should deliver.
Other services are considered standard and should preferably be implemented, but this is not
mandatory. Remaining services are not mandatory

S e r v i c e / F u n c t i o n a l i t i e s R e q u i r e m e n t

Endpoint service Core

Resolver service Core

32

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Discovery service Standard

Peer information service Standard

Pipe service Standard

Rendezvous service Standard

 5.5 Modules

JXTA modules are a low-level JXTA abstraction used to represent any piece of "code" and the
interface (API) which that code provides. Modules are used to implement services, message
transports and other loadable bits of JXTA code. Most JXTA developers typically don't have to
deal with modules as distribution. That includes the initial set of services required by most
applications. The module abstraction does not specify the physical "code" implementation, as it
can be provided as a Java class, a Java jar, a dynamic library DLL, a set of XML messages, or a
script. The implementation of the module behavior is left to module implementer. For instance,
modules can be used to represent different implementations of a network service on different
platforms, such as the Java platform, Microsoft Windows, or the Solaris Operating Environment.

Modules provide a generic abstraction to allow a peer to instantiate a function or service. When a
peer joins a peer group they may find new behaviors that they may want to instantiate. For
example, when joining a peer group, a peer may be required to provide a new search service that
is only used in this peer group. In order to join this group, the peer must instantiate this new
search service. The module framework enables the representation and advertisement of platform-
independent behaviors, and allows peers to describe and instantiate any type of implementation of
a behavior. For example, a peer has the ability to instantiate either a Java or a C implementation
of the specified behavior.

The ability to describe and publish platform-independent behavior is essential to support the
development of new peer group services which are provisioned by a heterogeneous cadre of
peers. The module advertisement enables JXTA peers to describe a behavior in a platform-
independent manner. In fact, JXTA uses module advertisements to self-describe it's own services.

The module abstraction includes a module class, module specification, and module
implementation:

• Module Class

The module class is primarily used to advertise the existence of a behavior. The class
definition represents an expected behavior and an expected binding to support the module.
Each module class is identified by a unique ID, the ModuleClassID.

• Module Specification

The module specification is primarily used to access a module. It contains all the
information necessary to access or invoke the module. For instance, in the case of a
service, the module specification may contain a pipe advertisement to be used to
communicate with the service.

A module specification is one approach to providing the functionality that a module class
implies. There can be multiple module specifications for a given module class. Each
module specification is identified by a unique ID, the ModuleSpecID. The ModuleSpecID
contains the ModuleClassID (i.e., the ModuleClassID is embedded in a ModuleSpecID),
indicating the associated module class.

A module specification implies network compatibility. All implementations of a given module
specification must use the same protocols and are compatible, although they may be

33

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

written in a different language.

• Module Implementation

The module implementation is the implementation of a given module specification. There
may be multiple module implementations for a given module specification. Each module
implementation contains the ModuleSpecID of the associated specification it implements.

Modules are used by peer group services, and can also be used by stand-alone services. JXTA
services can use the module abstraction to identify the existence of the service (its Module Class),
the specification of the service (its Module Specification), or an implementation of the service (a
Module Implementation). Each of these components has an associated advertisement which can
be published and discovered by other JXTA peers.

As an example, consider the JXTA Discovery Service. It has a unique ModuleClassID, identifying
it as a discovery service — its abstract functionality. There can be multiple specifications of the
discovery service, each possibly incompatible with each other. One may use different strategies
tailored to the size of the group and its dispersion across the network, while another experiments
with new strategies. Each specification has a unique ModuleSpecID, which references the
discovery service ModuleClassID. For each specification, there can be multiple implementations,
each of which contains the same ModuleSpecID.

In summary, there can be multiple specifications of a given module class, and each may be
incompatible. However, all implementations of any given specification are assumed to be
compatible.

 5.6 Message

JXTA services and applications communicate using JXTA Messages. JXTA Messages are the
basic unit of data exchange between peers. Each JXTA protocol is defined as a set of messages
which the participating peers exchange. Messages are sent between peers using the Endpoint
Service and the Pipe Service as well as JxtaSocket and other approaches. Most applications do
not need to use unidirectional pipe or the JXTA Endpoint Service directly. Instead, applications
and services commonly use the JXTA Socket and JxtaBiDiPipe communication channels to send,
and receive messages.
The JXTA protocols are specified as a set of messages exchanged between peers. The use of
XML messages to define protocols allows many different kinds of peers to utilize a given protocol.
Because the data is tagged, each peer is free to implement the protocol in a manner best suited to
its abilities and role. If a peer only needs some subset of the message, the XML data tags enable
that peer to identify the parts of the message that are of interest. For example, a peer that is highly
constrained, and has insufficient capacity to process some or most of a message, can use data
tags to extract the parts that it can process and ignore the remainder. Each software platform
binding describes how a message is converted to and from a native data structure such as a Java
object or a C structure.
The JXTA protocols define two “on-wire” representations for messages: XML and binary. These
on-wire representations are the data format used for transmitting the message between peers.
Different on-wire formats are used to take best advantage of the characteristics of the underlying
network transport.

 5.7 Pipes

JXTA peers use pipes to send messages to one another. Pipes are an asynchronous,
unidirectional and non-reliable (with the exception of unicast secure pipes) message transfer
mechanism used for communication and data transfer. Pipes are virtual communication channels

34

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

and may connect peers that do not have a direct physical link, resulting in a logical connection.
Pipes can be used to send any type of data including XML and HTML text, images, music, binary
code, data strings and Java Objects.
The pipe endpoints are referred to as the receiving input pipe and the sending output pipe. Pipe
endpoints are dynamically bound to peer endpoints when the pipe is opened. Peer endpoints
correspond to available peer network interfaces with an example being a TCP port and associated
IP address, that can be used to send and receive messages. JXTA pipes can have endpoints that
are connected to different peers at varying times, or may not be connected at all. All pipe
resolution and communication is done within the scope of a peer group. That is, the output and
input pipes must belong to the same peer group.
Pipes offer two modes of communication, point-to-point and propagate, as seen in the diagram
below. JXSE (open Source Java implementation of the JXTA protocols standard edition) also
provides secure unicast pipes, a secure variant of the point-to-point pipe.

• Point-to-point Pipes

A point-to-point pipe connects exactly two pipe endpoints together, an input pipe on one
peer receives messages sent from the output pipe of another peer. It is also possible for
multiple peers to bind to a single input pipe.

• Propagate Pipes

A propagate pipe connects one output pipe to multiple input pipes. Messages flow from the
output pipe, the propagation source, into the input pipes.

• Secure Unicast Pipes

A secure unicast pipe is a type of point-to-point pipe that provides a secure and reliable
communication channel.

Unidirectional pipes are a very-low level JXTA communication programming abstraction. It is
recommended that developers use the higher-level communication abstraction provided by the
JxtaSocket and JxtaBiDipipe services described in the next section.

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

(Bidirectional reliable communication channels)

The basic JXTA pipes provide unidirectional, unreliable communication channels. In order to make
pipes more useful to services and applications it is necessary to implement bidirectional and
reliable communication channels on top of the pipe primitives. JXSE provides functionality to meet
the level of service quality required by most applications:

• Reliability

• Ensures message sequencing

• Ensures delivery

• Exposes message and stream interfaces

• Security

• JxtaSocket and JxtaServerSocket :

• Sub-class java.net.Socket and java.net.ServerSocket respectively

• Are built on top of pipes, endpoint messengers, and the reliability library

• Provide bidirectional, reliable and secure communication channels

• Expose a stream based interface.

• Provide configurable internal buffering and message chunking

• Does not implement Nagle's algorithm, therefore streams must be flushed as needed

• JxtaBiDiPipe and JxtaServerPipe provides:

• Are built on top of pipes, endpoint messengers, and the reliability library

• Provide bidirectional, reliable, and secure communication channels

• Expose a message based interface

• Does not provide message chunking. Applications need to ensure message size does
not exceed the standard message size limitation of 64K.

36

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

JxtaServerSocket and JxtaServerPipe expose an input pipe to process connection requests and
negotiate communication parameters. JxtaSocket and JxtaBiDiPipe, on the other hand, bind to
respective private dedicated pipes independent of the connection request pipe.

 5.8 Advertisement

All JXTA network resources — such as peers, peer groups, pipes, and services — are
represented as advertisements. Advertisements are language-neutral meta-data structures
represented as XML documents. The JXTA protocols use advertisements to describe and publish
the existence of a peer's resources. Peers discover resources by searching for their
corresponding advertisements, and may cache any discovered advertisements locally.
Each advertisement is published with a lifetime that specifies the availability of its associated
resource. Lifetimes enable the deletion of obsolete resources without requiring any centralized
control. An advertisement can be republished (before the original advertisement expires) to extend
the lifetime of a resource.

The JXTA protocols define the following advertisement types:

• Peer Advertisement — describes the peer's resources. The primary use of this
advertisement is to hold specific information about the peer, such as its name, peer ID,
available endpoints, and any run-time attributes which individual group services want to
publish (such as being a rendezvous peer for the group).

• Peer Group Advertisement — describes peer group-specific resources, such as name, peer
group ID, description, specification, and service parameters.

• Pipe Advertisement — describes a pipe communication channel, and is used by the pipe
service to create the associated input and output pipe endpoints. Each pipe
advertisement contains an optional symbolic ID, a pipe type (point-to-point, propagate,
secure, etc.) and a unique pipe ID.

• Module Class Advertisement — describes a module class. Its primary purpose is to formally
document the existence of a module class. It includes a name, description, and a unique
ID (ModuleClassID).

• ModuleSpecAdvertisement — defines a module specification. Its main purpose is to provide
references to the documentation needed in order to create conforming implementations
of that specification. A secondary use is, optionally, to make running instances usable
remotely, by publishing information such as a pipe advertisement. It includes name,
description, unique ID (ModuleSpecID), pipe advertisement, and parameter field
containing arbitrary parameters to be interpreted by each implementation.

• ModuleImplAdvertisement — defines an implementation of a given module specification. It
includes a name, associated ModuleSpecID, as well as code, package, and parameter
fields which enable a peer to retrieve data necessary to execute the implementation.

• Rendezvous Advertisement — describes a peer that acts as a rendezvous peer for a given
peer group.

• Peer Info Advertisement — describes the peer info resource. The primary use of this
advertisement is to hold specific information about the current state of a peer, such as
uptime, inbound and outbound message count, time last message received, and time
last message sent.

Each advertisement is represented by an XML document. Advertisements are composed of a
series of hierarchically arranged elements. Each element can contain its data or additional
elements. An element can also have attributes which are comprised of name-value string pairs.

37

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

An attribute is used to store meta-data, which helps to describe the data within the element.

An example of a pipe advertisement is included in Figure 9.

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

 <Id>

 urn:jxta:uuid-59616261646162614E504720503250338E3E786229EA460DADC1A176B69B731504

</Id>

<Type>

 JxtaUnicast

</Type>

<Name>

 TestPipe

</Name>

</jxta:PipeAdvertisement>

Figure 9. A Pipe Advertisement

The complete specification of the JXTA advertisements is given in the JXTA Protocols
Specification (see.http://jxta-spec.dev.java.net). Services or peer implementations may subtype
any of the above advertisements to create their own application advertisements.

 5.9 Security

Dynamic P2P networks, such as the JXTA network, need to support different levels of resource
access. JXTA peers operate in a role-based trust model, in which an individual peer acts under
the authority granted to it by another trusted peer to perform a particular task.
Five basic security requirements must be provided:
• Confidentiality — guarantees that the contents of a message are not disclosed to

unauthorized individuals.
• Authentication — guarantees that the sender is who he or she claims to be.
• Authorization — guarantees that the sender is authorized to send a message.
• Data integrity — guarantees that the message was not modified accidentally or deliberately in

transit.
• Refutability — guarantees that the message was transmitted by a properly identified sender

and is not a replay of a previously transmitted message.
XML messages provide the ability to add meta-data such as credentials, certificates, digests, and
public keys to JXTA messages, enabling these basic security requirements to be met. Message
digests and signatures guarantee the data integrity of messages. Messages may also be
encrypted and signed for confidentiality and refutability. Credentials can be used to provide
message authentication and authorization.
A credential is a token that is used to identify a sender, and it can be used to verify a sender’s
right to send a message to a specified endpoint. The credential is an opaque token that must be
presented each time a message is sent. The sending address placed in a JXTA message
envelope is cross-checked with the sender’s identity in the credential. Each credential’s
implementation is specified as a plug-in configuration, which allows multiple authentication
configurations to co-exists on the same network.
It is the intent of the JXTA protocols to be compatible with widely accepted transport-layer security
mechanisms for message-based architectures, such as Secure Sockets Layer (SSL) and Internet
Protocol Security (IPSec).

38

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5.10 IDs

Peers, peer groups, pipes and other JXTA resources need to be uniquely identifiable. A JXTA ID
uniquely identifies a resource and serves as a canonical way of referring to that resource.
Currently, there are six types of JXTA entities which have JXTA ID types defined: peers, peer
groups, pipes, content, module classes, and module specifications.
URNs are used to express JXTA IDs. URNs are a form of URI that “are intended to serve as
persistent, location-independent, resource identifiers”. Like other forms of URI, JXTA IDs are
presented as text.

An example JXTA peer ID is:
urn:jxta:uuid-59616261646162614A78746150325033F3BC76FF13C2414CBC0AB663666DA53903

An example JXTA pipe ID is:
urn:jxta:uuid-59616261646162614E504720503250338E3E786229EA460DADC1A176B69B731504

Every JXTA ID has an ID Format. The format describes how the ID was generated and how it may
be manipulated by programs. Every ID indicates it's format immediately after the urn:jxta: prefix.
There are two common JXTA ID Formats, uuid and jxta, though others exist. The jxta format is
used for special common identifiers such as the IDs of the World Peer Group and the Network
Peer Group. The uuid format is used for most other IDs. The uuid format provides randomly
generated unique IDs and is based upon DCE GUID/UUIDs. The portion of a JXTA ID which
follows the ID Format is specific to each ID Format and is often opaque—aren't meant to be able
be decoded directly from the URI.

 5.11 Network architecture

The JXTA network is an ad-hoc, multi-hop, and adaptive network composed of connected peers.
Connections in the network may be transient and, as a result, message routing between peers is
non-deterministic. Peers may join or leave the network at any time; which results in ever changing
routing information.
The only common aspect that various JXTA applications share is that they communicate using
JXTA protocols. The organization of the network is not mandated by the JXTA framework, but in
practice four kinds of peers are typically used (see Figure 10):
• Minimal edge peer
A minimal edge peer can send and receive messages, but does not cache advertisements or
route messages for other peers. Peers on devices with limited resources (e.g., a PDA or cell
phone) would likely be minimal edge peers.
• Full-featured edge peer
A full-featured peer can send and receive messages and will typically cache advertisements. A
simple peer replies to discovery requests with information found in its cached advertisements, but
it does not forward any discovery requests. In any JXTA deployment most peers are likely to be
edge peers.
• Rendezvous peer
A rendezvous peer is an infrastructure peer, it aids other peers with message propagation,
discovery of advertisements and routes, and most importantly it maintains a topology map of of
other infrastructure peers, which then used for controlled propagation, and maintenance of the
distributed hash table. Each peer group maintains its own set of rendezvous peers and may have
as many rendezvous peers as needed. Edge peers send search and discovery requests to their

39

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

rendezvous peer which in turn may forward requests it cannot answer to other known rendezvous
peers using the topology mapped distributed hash table.
• Relay peer1

A relay peer s an infrastructure peer, it aids non addressable (firewalled/NAT'd) peers with
message relaying. A peer may request an in memory message box from a relay peer to facilitate
message relaying whenever needed.

 5.11.1 Shared Resource Distributed Index (SRDI)

JXSE supports a shared resource distributed index (SRDI) service to provide an efficient
mechanism for propagating query requests within the JXTA network. Rendezvous peers maintain
an index of advertisements published by edge peers. When edge peers publish new
advertisements, they use the SRDI service to push advertisement indexes to their rendezvous.
With this rendezvous-edge peer hierarchy, queries are propagated between rendezvous only,
which significantly reduces the number of peers involved in the search for an advertisement.
Each rendezvous maintains its own list of known rendezvous in the peer group. A rendezvous
may retrieve rendezvous information from a predefined set of bootstrapping, or seeding,
rendezvous. Rendezvous periodically select a given random number of rendezvous peers and
send them a random list of their known rendezvous. Rendezvous also periodically purge non-
responding rendezvous. Thus, they maintain a loosely-consistent network of known rendezvous
peers.
When a peer publishes a new advertisement, the advertisement is indexed by the SRDI service
using keys such as the advertisement name or ID. Only the indexes of the advertisement are
pushed to the rendezvous by SRDI, minimizing the amount of data that needs to be stored on the
rendezvous. The rendezvous also pushes the index to additional rendezvous peers (selected by
the calculation of a hash function of the advertisement index).

 5.11.2 Queries

An example configuration is shown in Figure 11. Peer A is an edge peer and is configured to use
Peer R1 as its rendezvous. When Peer A initiates a discovery or search request, it is initially sent
to its rendezvous peer — R1, in this example — and also via multicast to other peers on the same
subnet. Local network queries (i.e., within a subnet) are propagated to local network peers using
what a transport defines as the broadcast or multicast method. Peers receiving the query respond
directly to the requesting peer if they contain the information in their local cache.

1 Relay peers were referred to as router peers in early JXTA documentation.

40

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Queries beyond the local network are sent to the connected rendezvous peer. The rendezvous
peer attempts to satisfy the query against its local cache. If it contains the requested information, it
replies directly to the requesting peer and does not further propagate the request. If it contains the
index for the resource in its SRDI cache, it will notify the peer that published the resource and that
peer will respond directly to the requesting peer. The rendezvous is unable to respond directly to
the querying peer because the rendezvous stores only the index for the advertisement and not the
advertisement itself.

If the rendezvous peer does not contain the requested information, a default limited-range walker
algorithm is used to walk the set of rendezvous nodes looking for a rendezvous that contains the
index. A query path may be altered by a network map function to reduce the TTL of a query; A
hop count is used to specify the maximum number of times the request is mapped/forwarded to
avoid ping-pong effects which can occur in unstable or very dynamic networks. Once the query
reaches the peer, it replies directly to the originator of the query.

SRDI uses a SHA1 hash addressing scheme, where the 160 bit hash address space is divided
amongst a ordered list of rendezvous nodes. When indexes are received they are hashed to
determine their replication address, then replicated on their destination replica rendezvous.
Figure 12 depicts a logical view of how the SRDI service works. Once Node A publishes a set of
advertisements, a set of indexes in the form of an SRDI message is sent to its rendezvous, RDV1,
where such Indexes are stored, then replicated (based on their hash mapping) on rendezvous 2,
3, and 4. Node C then issues a query for advertisement A, which is walked to rendezvous 2, then
mapped to rendezvous 3, then finally forwarded node A.

41

Figure 11. Request Propagation via Rendezvous Peers

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5.12 Firewalls and NAT

A peer behind a firewall can send a message directly to a peer outside a firewall, but a peer
outside the firewall cannot establish a direct connection with a peer behind the firewall. The same
is true for peers which are behind a NAT device.
In order for JXTA peers to communicate with each other across a firewall, the following conditions
must exist:
• At least one peer in the peer group inside the firewall must be aware of at least one peer

outside of the firewall.
• The peer inside and the peer outside the firewall must be aware of each other and must support

a common transport (HTTP or TCP).
• The firewall, at the very least, has to allow outbound HTTP or TCP connections. Figure 4-3

depicts a typical message routing scenario through a firewall. In this scenario, JXTA Peers A
and B want to pass a message, but the firewall prevents them from communicating directly.
JXTA Peer A first makes a connection to Peer C using a protocol such as HTTP that can
penetrate the firewall. Peer C then makes a connection to Peer B using a protocol such as
TCP/IP. A virtual connection is now made between Peers A and B.

42

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 5.13 JXTA protocols

JXTA defines a series of XML messages, or protocols, for communication between peers. Peers
use these protocols to discover one another, advertise and discover network resources, and
communication and route messages.
There are six standard JXTA protocols2:

• Peer Discovery Protocol (PDP) — used by peers to advertise their own resources (e.g.,
peers, peer groups, pipes, or services) and discover resources from other peers. Each
peer resource is described and published using an advertisement.

• Peer Information Protocol (PIP) — used by peers to obtain status information (uptime, state,
recent traffic, etc.) from other peers.

• Peer Resolver Protocol (PRP) — enables peers to send a generic query to one or more
peers and receive a response (or multiple responses) to the query. Queries can be
directed to all peers in a peer group or to specific peers within the group. Unlike PDP
and PIP, which are used to query specific predefined information, this protocol allows
peer services to define and exchange any arbitrary information they need.

• Pipe Binding Protocol (PBP) — used by peers to establish a virtual communication channel,
or pipe, between one or more peers. The PBP is used by a peer to bind two or more
ends of the connection (pipe endpoints).

• Endpoint Routing Protocol (ERP) — used by peers to find routes (paths) to destination ports
on other peers. Route information includes an ordered sequence of relay peer IDs that
can be used to send a message to the destination. (For example, the message can be
delivered by sending it to Peer A which relays it to Peer B which relays it to the final
destination.)

• Rendezvous Protocol (RVP) — used by edge peers to resolve resources, propagate
messages, and advertise local resources. used by rendezvous peers to organize with
other rendezvous peers, share the distributed hash table address space, and propagate
messages in controlled fashion (message walkers).

2 For a complete description of the JXTA protocols, please see the JXTA Protocols Specification, available for
download from http://jxta-spec.dev.java.net.

43

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

All of the standard JXTA protocols are asynchronous and are based on a query/response model.
A JXTA peer uses one of the protocols to send a query to one or more peers in its peer group. It
may receive zero, one, or more responses to its query. For example, a peer may use PDP to send
a discovery query asking for all known peers in the default Net Peer Group. In this case, multiple
peers will likely reply with discovery responses. In another example, a peer may send a discovery
request asking for a specific pipe named “aardvark”. If this pipe isn’t found, then zero discovery
responses will be sent in reply.
JXTA peers are not required to implement all six protocols; they only need implement the
protocols they will use. JXSE supports all six JXTA protocols. The Java SE API is used to access
operations supported by these protocols, such as discovering peers or joining a peer group.

 5.13.1 Peer Discovery Protocol

The Peer Discovery Protocol (PDP) is used to discover any published peer resources. Resources
are represented as advertisements. A resource can be a peer, peer group, pipe, service, or any
other resource that has an advertisement.

PDP enables a peer to find advertisements on the network. The PDP is the default discovery
protocol for all user defined peer groups and the default net peer group. Custom discovery
services may choose to leverage the PDP. If a peer group does not define an alternate discovery
service, the PDP is used to probe the network for advertisements.

There are multiple ways to discover distributed information. The current JXSE implementation
uses a combination of IP multicast to the local subnet and the use of a rendezvous network, which
is a technique based on a rendezvous maintained DHT (Distributed Hash Table). Rendezvous
nodes provide the mechanism of directing requests into the network to dynamically discover
information. A node may be configured with a predefined set of rendezvous nodes. A node may
also choose to bootstrap itself by dynamically locating rendezvous nodes or network resources in
its local network via multicast messages.

Nodes generate discovery query messages to discover advertisements within a peer group. This
message is enclosed within a resolver query contains the peer group credential of the probing
node and identifies the probing peer to the message recipient. Messages can be sent to any node
within a peer group.

A query is not guaranteed to result in any responses, or result in responses matching the
requested threshold.

 5.13.2 Peer Information Protocol

Once a node is located, it's capabilities and status may be queried. The Peer Information Protocol
(PIP) provides a set of messages to obtain peer status information. This information can be used
for commercial or internal deployment of JXTA applications. For example, in commercial
deployments the information can be used to determine the usage of a peer service and bill the
service consumers for their use. In an internal IT deployment, the information can be used by the
IT department to monitor a node’s behavior and reroute network traffic to improve overall
performance. These hooks can be extended to enforce the IT department's control of the node in
addition to providing status information.

The PIP ping message is sent to a peer to check if the peer is alive and to get information about
the peer. The ping message specifies whether a full response (peer advertisement) or a simple
acknowledgment (alive and uptime) should be returned.

44

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

The PeerInfo message is used to send a message in response to a ping message. It contains the
credential of the sender, the source peer ID and target peer ID, uptime, and peer advertisement.

 5.13.3 Peer Resolver Protocol

The Peer Resolver Protocol (PRP) enables peers to send generic query requests to other peers
and identify matching responses. Query requests can be sent to a specific peer or can be
propagated via the rendezvous services within the scope of a peer group. The PRP uses the
Rendezvous Service to disseminate a query to multiple peers and uses unicast messages to send
queries to specified peers.
The PRP is a foundation protocol supporting generic query requests. Both PIP and PDP are built
using PRP and they provide specific query/requests: the PIP is used to query specific status
information and PDP is used to discover peer resources. The PRP can be used for any generic
query that may be needed for an application. For example, the PRP enables peers to define and
exchange queries and to find or search service information (such as the state of the service, the
state of a pipe endpoint, etc).

The resolver query message is used to send a resolver query request to a service running on
another member of a peer group. The resolver query message contains the credential of the
sender, a unique query ID, a specific service handler, and the query. Each service can register a
handler in the peer group's resolver service to process resolver query requests and generate
replies. The resolver response message is used to send a message in response to a resolver
query message. The resolver response message contains the credential of the sender, a unique
query ID, a specific service handler, and the response. Multiple resolver query messages may be
sent. A peer may receive zero, one, or more responses to a query request.

Peers may also participate in the Shared Resource Distributed Index (SRDI). SRDI provides a
generic mechanism enabling JXTA services to utilize a distributed index of shared resources with
other peers that are grouped as a set of more capable peers, such as rendezvous peers. These
indexes can be used to forward queries in the direction where the query is most likely to be
answered and repropagates the messages to peers interested in those messages. The PRP
sends a resolver SRDI message to the named handler on one or more peers in the peer group.
The resolver SRDI message is sent to a specific handler and it contains a string that will be
interpreted by the targeted handler.

 5.13.4 Pipe Binding Protocol

The Pipe Binding Protocol (PBP) is used by peer group members to bind a pipe advertisement to
a pipe endpoint. The pipe virtual link (or pathway) can be layered upon any number of physical
network transport links, such as TCP/IP. Each end of the pipe works to maintain the virtual link
and to re-establish it, if necessary, by binding or finding the pipe’s currently bound endpoints.

A pipe can be viewed as an abstract named message queue, which supports create, open/resolve
(bind), close (unbind), delete, send, and receive operations. Actual pipe implementations may
differ, but all compliant implementations use PBP to bind the pipe to an endpoint. During the
abstract create operation, a local peer binds a pipe endpoint to a pipe transport.

The PBP query message is sent by a peer pipe endpoint to find a pipe endpoint bound to the
same pipe advertisement. The query message may ask for information not obtained from the
cache. This is used to obtain the most up-to-date information from a peer. The query message
can also contain an optional peer ID which, if present, indicates that only the specified peer should
respond to the query.

45

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

The PBP answer message is sent back to the requesting peer by each peer bound to the pipe.
The message contains the Pipe ID, the peer where a corresponding InputPipe has been created,
and a boolean value indicating whether the InputPipe exists on the specified peer.

 5.13.5 Endpoint Routing Protocol

The Endpoint Routing Protocol (ERP) enables JXTA peers to send messages to remote peers
without having a direct connection to the destination peer. The message will be passed through
intermediary peers to reach it's final destination. ERP defines a query and response protocol
which it uses to discover peer routing information and a message “envelope” that is attached to
JXTA Messages describing the route a message should travel from one peer (the source) to
another (the destination).
To send a message to another peer, the source peer first looks in its local cache to determine if it
has a route to the destination peer. If it does not already have a route to the destination peer, it
sends a route resolver query request asking for route information to the destination peer. Any peer
receiving this route query will check to see if knows a route to the requested peer. If the peer does
know of a valid route, it will respond to the route query with the route information for the desired
destination peer. Any peer can query for route information and any peer within a peer group may
offer route information and/or route messages destined for other peers. Relay peers typically
cache route information.

Route query requests are sent by a peer to request route information for a destination peer. Route
responses include the peer ID of the responder, the peer ID of the route's destination, and a semi-
ordered sequence of peer IDs. The sequence of peer ID hops may provide a complete or partial
route to the destination but at minimum contains one peer ID. In some cases the sequence may
contain several alternative routes to the destination. A route can safely express alternatives
because of the way in which routes are used.

The semi-ordered sequence of peer IDs provided in a Route Response provide information as to
the path that a message may be forwarded in order to reach a destination peer. Each peer along
the stated path may enhance and/or optimize the route the message takes based upon it's own
knowledge. For example, if a peer receives a message containing a ten hop route to a destination
peer but it is itself directly connected to the destination peer then it makes sense to forward the
message directly rather than sending it along the long route. Similarly, a peer may shorten a route
by using a shorter route it knows between any two hops in the route which is included with a
message.

The Message routing procedure used by the Endpoint Routing Protocol is roughly as follows;

1. If I am originating the message then check if I have a route to the destination. If I don't have
a route to the destination, query for a route and wait for a route to be found. Eventually give
up if no route is found.

2. If I am not originating the message and do not have a route for the destination nor any peer
listed in the route attached to the message then send a failure message to the peer from
which I received the message. JXTA peers do not currently generate route queries for
messages they do not originate as this is too easily used to create distributed denial of
service attacks (DdoS).

3. Remove my peer ID from the message route and all peer IDs which preceded mine in the
message route.- Excluding all Peer Ids already in the message route, prepend the route I
know to the destination peer to the message route.

4. Starting at the last peer ID listed in the message route, check if I have a direct connection
to any of the listed peer IDs. If so, remove all of the peer IDs before that peer in the
message route and forward the message to directly connected peer.

46

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

5. If no direct connection exists to any of the peer Ids listed in the message route then forward
the message to the first peer listed in the message route.

 5.13.6 Rendezvous Protocol

In JXTA, a rendezvous peer provides simple peers in private networks with the capability to
broadcast messages to other members of a peer group outside the private network.This
functionality is independent of the underlying network transport, allowing message propagation
over transports that don’t support multicast or broadcast capabilities. The Rendezvous Protocol
(RVP) is used for propagation of messages within a peer group.

Before a peer can use a rendezvous peer to propagate messages, it must connect to the
rendezvous peer and obtain a lease.A lease specifies the amount of time that the peer requesting
a connection to the rendezvous peer is allowed to use the rendezvous peer before it must renew
the connection lease.To handle the interactions required to provide this functionality, the RVP
defines three message formats:

• Lease Request Message—A message format used by a peer to request a connection
lease to the rendezvous peer

• Lease Granted Message—A message format used by the rendezvous peer to approve a
peer’s Lease Request Message and provide the length of the lease

• Lease Cancel Message—A message format used by a peer to disconnect from the
rendezvous peer

Unlike previous protocols, these messages are not specifically defined in terms of XML; instead,
they are defined in terms of message elements. As in XML, message elements consist of a name
and the contents of the element, and they
can be nested.

The RVP provides mechanisms which enable propagation of messages to be performed in a
controlled and efficient way. The RVP is divided into three parts;

● The protocol used by the Rendezvous Peers to organize themselves, also known as the
PeerView protocol.

● The protocol used by client peers to register interest in receiving propagation messages, a
simple lease protocol.

● The protocol used for propagating messages to the peers which have expressed an
interest in the destination address. The message propagation protocol is the only protocol
which all participants must implement

 5.14 OSGI (IAN)

The OSGi Service Platform facilitates the componentization of software modules and applications
and assures interoperability of applications and services over a variety of networked devices.
Building systems from in-house and off-the-shelf OSGi modules increases development
productivity and makes them much easier to modify and evolve.
The java implementation of the jxta framework (JXSE 2.7) and and it's mobile version (JXME),
support the OSGi framework by providing the bundles needed to export the necessary services for
the various system components.
The integration of the Apache Felix (implementation of the OSGi framework) and the JXSE

47

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

(implementation of the jxta framework) is very easy and it provides us with the ability to start, stop
and update the jxta framework and the system components at runtime without stopping the whole
system.
Apache Felix provides us with a number useful bundles out of the box, such as an http server, a
command line tool to be used for managing the bundles installed, logging, security etc.

 6 Conclusions
This document describes the work has been done in Task 3.4 of the project Peerassit entitled
“Peer-to-peer overlay network selection”. In this task, we have analyzed the existing platforms for
building P2P networks. All candidates platforms have been evaluated in order to select the most
appropriate one as a base technology for P2P. Platforms evaluation has been conducted
considering the entire set of PeerAssist requirements including functional and non functional.
From these requirements special attention has been paid to those that are mainly related to
networking functions such as connectivity, communication grouping, interoperability, openness,
serviceability, security, trust, scalability, efficiency, etc. The most appropriate technology for
PeerAssist is JXTA.

JXTA provides a common set of open protocols backed with open source reference
implementations for developing P2P applications. The JXTA protocols standardize the manner in
which peers: (I) discover each other; (ii) self-organize into peer groups; (iii) advertise and discover
network resources, (iv) communicate with each other; and (v) monitor each other. The JXTA
protocols are designed to be independent of programming languages and transport protocols
Using JXTA technology, developers can write networked, interoperable applications that can:

• Find other peers on the network with dynamic discovery across firewalls and NATs
• Easily share resources with anyone across the network
• Create a group of peers that provide a service
• Monitor peer activities remotely
• Securely communicate with other peers on the network

JXTA has been implemented in a small scale testbed for peerassist. The basic functionality of
JXTA has been tested and possible improvements and enhancements has been drawn.

48

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

 7 References

[1] B. Ford et al., “Persistent Personal Names for Globally Connected Mobile Devices”. in
OSDI, November 2006.

[2] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostic´, MACEDON:
methodology for automatically creating, evaluating, and designing overlay networks, in:
Proc. NSDI’04, 2004, pp. 267–280.

[3] “SourceForge: Project Info – The Peer-to-Peer Trusted Library.” Version 0.2. April 5,
2001. URL: http://sourceforge.net/projects/ptptl (3 July 2001).

[4] “The Peer-to-Peer Trusted Library (Release 0.2) README.” Version 0.2. April 5, 2001.
URL: http://sourceforge.net/docman/display_doc.php?docid=3851&group_id=19950 (3
July 2001)

[5] Taylor, Ian J. From P2P to Web Services and Grids - Peers in a Client/Server World.
Springer, 2005

[6] TheMACEDONproject,Available from:<http://macedon.ucsd.edu/>.

[7] The Mace project, Available from: <http://mace.ucsd.edu>

[8] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications, ACM SIGCOMM 2001, San
Deigo, CA, August 2001, pp. 149-160.

[9] Hughes, D., Warren, I., Coulson, G., AGnuS: the altruistic Gnutella server. In the
proceedings of IEEE P2P 2003, Linkoping, Sweden, September, 2003

[10] Foster, I., Iamnitchi, A., On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing. In the proceedings of IPTPS'03, Berkeley, CA, USA, February 2003

[11] Nagaraja, K., Rollins, S., Khambatti, M., Looking beyond the Legacy of Napster and
Gnutella. In IEEE Distributed Systems Online, vol. 7, no. 3, 2006

[12] The EC funded P2P ARCHITECT project (IST-2001-32708). More information can be
found at the URL http://www.atc.gr/p2p_architect/index.htm

[13] JXTA v2.0 Protocols Specification, Sun Microsystems, The Internet Society, 2001-
2003. More information can be found at the URL http://www.jxta.org

[14] Halepovic, E., Deters, R., Building a P2P Forum System with JXTA. In the proceedings
of P2P 2002, Linkoping, Sweden, 2002.

[15] The Gnutella protocol specification v0.4. Clip2 Distributed Search Services. Available
from http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

[16] Jtella. More information and the latest version of Jtella can be found at
http://polo.lancs.ac.uk/p2p/JTella/jtella.htm

[17] Accord. More information about the Accord project can be find at
https://accord.dev.java.net/

[18] Groove Peer Computing Platform, Groove Networks Inc., 2000. More information can
be found at the URL http://www.groove.net

[19] Dabek, F. et al, Towards a common API for structured P2P overlays. In the
proceedings of IPTPS'03, Berkeley, CA, February, 2003

[20] Portmann, M., Ardon, S., Senac, P., Seneviratne, A., PROST: A Programmable

49

AAL‐2009‐2‐137 PeerAssist D3.5: P2P overlay networks for PeerAssist

Structured Peer-to-Peer Overlay Network. In the proceedings of IEEE P2P 2004,
Zurich, Switzerland, 2004.

[21] Open Overlays Project. E-Science Project (EPSRC BR/S68514/01 & GR/S68521/01).
More information can be found at
http://www.comp.lancs.ac.uk/computing/research/mpg/projects/openoverlays/index.htm

[22] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems, IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, November, 2001, pp. 329-350.

[23] A. Rowstron and P. Druschel, "Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility", 18th ACM SOSP'01, Lake Louise,
Alberta, Canada, October 2001.

[24] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh,
"SplitStream: High-bandwidth multicast in a cooperative environment", SOSP'03,Lake
Bolton, New York, October, 2003.

[25] Easy Entry Library (EZEL) for JXTA. http://ezel.jxta.org/.

[26] Mandar Kelaskar, Vincent Matossian, Preeti Mehra, Dennis Paul, and Manish
Parashar. A study of discovery mechanisms for peer-to-peer applications. In CCGRID,
pages 444–445, 2002.

[27] In suk Kim, Yong hyeog Kang, and Young Ik Eom. An efficient contents discovery
mechanism in pure p2p environments. In GCC (1), pages 420–427, 2003.

[28] Dimitrios Tsoumakos and Nick Roussopoulos. A comparison of peer-to-peer search
methods. In WebDB, pages 61–66, 2003.

[29] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-peer networks. In
ICDCS ’02: Proceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS’02), page 5. IEEE Computer Society, 2002.

[30] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. Lecture Notes in
Computer Science, 2009:46+, 2001.

[31] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content addressable network, 2000.

[32] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[33] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applications. In
Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

50

